Normalization strategy of microarray gene expression data

被引:0
|
作者
伍亚舟 [1 ]
张玲 [1 ]
黄明辉 [2 ]
杨梦苏 [2 ]
易东 [1 ]
机构
[1] Department of Health Statistics,Third Military Medical University,Chongqing 400038,China
[2] Shenzhen Institute,City University of HongKong,Shenzhen 518000,China
基金
中国国家自然科学基金;
关键词
gene chip; normalization factor; expression ratio; significant difference;
D O I
暂无
中图分类号
R346 [];
学科分类号
1001 ;
摘要
Objective:To discuss strategies and methods of normalization on how to deal with and ana- lyze data for different chips with the combination of statistics,mathematics and hioinformatics in order to find significant difference genes.Methods:With Excel and SPSS software,high or low density chips were analyzed through total intensity normalization(TIN)and locally weighted linear regression normalization (LWLRN).Results:These methods effectively reduced systemic errors and made data more comparable and reliable.Conclusion:These methods can search the genes of significant difference,although normal- ization methods are being developed and need to be improved further.Great breakthrough will be obtained in microarray data normalization analysis and transformation with the development of non-linear technolo- gy,software and hardware of computer.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条
  • [1] Variance stabilization and robust normalization for microarray gene expression data
    von Heydebreck, A
    Huber, W
    Poustka, A
    Vingron, M
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 623 - 628
  • [2] Iterative rank-order normalization of gene expression microarray data
    Eric A Welsh
    Steven A Eschrich
    Anders E Berglund
    David A Fenstermacher
    [J]. BMC Bioinformatics, 14
  • [3] Iterative rank-order normalization of gene expression microarray data
    Welsh, Eric A.
    Eschrich, Steven A.
    Berglund, Anders E.
    Fenstermacher, David A.
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [4] Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data
    Knowlton, N
    Dozmorov, IM
    Centola, M
    [J]. BIOINFORMATICS, 2004, 20 (18) : 3687 - 3690
  • [5] The weibull distribution based normalization method for affymetrix gene expression microarray data
    Autio, Reija
    Kilpinen, Sami
    Saarela, Matti
    Hautaniemi, Sampsa
    Kallioniemi, Olli
    Astola, Jaakko
    [J]. 2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 9 - +
  • [6] CrossNorm: a novel normalization strategy for microarray data in cancers
    Lixin Cheng
    Leung-Yau Lo
    Nelson L. S. Tang
    Dong Wang
    Kwong-Sak Leung
    [J]. Scientific Reports, 6
  • [7] CrossNorm: a novel normalization strategy for microarray data in cancers
    Cheng, Lixin
    Lo, Leung-Yau
    Tang, Nelson L. S.
    Wang, Dong
    Leung, Kwong-Sak
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] SNOMAD (Standardization and NOrmalization of MicroArray Data): web-accessible gene expression data analysis
    Colantuoni, C
    Henry, G
    Zeger, S
    Pevsner, J
    [J]. BIOINFORMATICS, 2002, 18 (11) : 1540 - 1541
  • [9] Enhanced quantile normalization of microarray data to reduce loss of information in gene expression profiles
    Hu, Jianhua
    He, Xuming
    [J]. BIOMETRICS, 2007, 63 (01) : 50 - 59
  • [10] Orthogonal projections to latent structures as a strategy for microarray data normalization
    Max Bylesjö
    Daniel Eriksson
    Andreas Sjödin
    Stefan Jansson
    Thomas Moritz
    Johan Trygg
    [J]. BMC Bioinformatics, 8