Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data

被引:35
|
作者
Yu, Hui [1 ]
Wang, Feng
Tu, Kang
Xie, Lu
Li, Yuan-Yuan
Li, Yi-Xue
Agrawal, Sunil
机构
[1] Shanghai Ctr Bioinformat Technol, Shanghai 200235, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Life Sci & Technol, Shanghai 200240, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Shanghai 200031, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Biol Sci, Bioinformat Ctr, Shanghai 200031, Peoples R China
关键词
D O I
10.1186/1471-2105-8-194
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The wide use of Affymetrix microarray in broadened fields of biological research has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as gene expression. The increased knowledge that one gene may have multiple transcript variants clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level. Results: Through performing rigorous alignments of the Affymetrix probe sequences against a comprehensive pool of currently available transcript sequences, and further linking the probesets to the International Protein Index, we generated transcript-level or protein-level annotation tables for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human Genome U133A Array. Application of our new annotations in re-examining existing expression data sets shows increased expression consistency among synonymous probesets and strengthened expression correlation between interacting proteins. Conclusion: By refining the standard Affymetrix annotation of microarray probesets from the gene level to the transcript level and protein level, one can achieve a more reliable interpretation of their experimental data, which may lead to discovery of more profound regulatory mechanism.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A robust method for estimating gene expression states using Affymetrix microarray probe level data
    Megu Ohtaki
    Keiko Otani
    Keiko Hiyama
    Naomi Kamei
    Kenichi Satoh
    Eiso Hiyama
    BMC Bioinformatics, 11
  • [32] A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data
    Barbosa-Morais, Nuno L.
    Dunning, Mark J.
    Samarajiwa, Shamith A.
    Darot, Jeremy F. J.
    Ritchie, Matthew E.
    Lynch, Andy G.
    Tavare, Simon
    NUCLEIC ACIDS RESEARCH, 2010, 38 (03) : e17.1 - e17.13
  • [33] Transcript-Level Analysis of Detoxification Gene Mutation-Mediated Chlorpyrifos Resistance in Laodelphax striatellus (Hemiptera: Delphacidae)
    Zhang, Yueliang
    Ma, Xixian
    Han, Yangchun
    Wang, Lihua
    Liu, Zewen
    Guo, Huifang
    Fang, Jichao
    JOURNAL OF ECONOMIC ENTOMOLOGY, 2019, 112 (03) : 1285 - 1291
  • [34] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [35] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Johannes Tuikkala
    Laura L Elo
    Olli S Nevalainen
    Tero Aittokallio
    BMC Bioinformatics, 9
  • [36] Geometric Interpretation of Gene Expression by Sparse Reconstruction of Transcript Profiles
    Prat, Yosef
    Fromer, Menachem
    Linial, Michal
    Linial, Nathan
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 355 - +
  • [37] Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips
    Fred van Ruissen
    Jan M Ruijter
    Gerben J Schaaf
    Lida Asgharnegad
    Danny A Zwijnenburg
    Marcel Kool
    Frank Baas
    BMC Genomics, 6
  • [38] PGED: A Porcine Gene Expression Data Repository Based on Affymetrix Genechip
    Wang, Haiyan
    Cao, Jianhua
    Zhao, Shuhong
    JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 2011, 10 (05): : 659 - 662
  • [39] Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips
    van Ruissen, F
    Ruijter, JM
    Schaaf, GJ
    Asgharnegad, L
    Zwijnenburg, DA
    Kool, M
    Baas, F
    BMC GENOMICS, 2005, 6 (1)
  • [40] Comparison between RNA-Seq and Affymetrix gene expression data
    Fumagalli, D.
    Haibe-Kains, B.
    Michiels, S.
    Brown, D. N.
    Gacquer, D.
    Majjaj, S.
    Salgado, R.
    Larsimont, D.
    Detour, V.
    Piccart, M.
    Sotiriou, C.
    Desmedt, C.
    CANCER RESEARCH, 2012, 72