Purpose: To quantify the influence of different skin models on mammographic breast dosimetry, based on dosimetric protocols and recent breast skin thickness findings. Methods: By using an adapted PENELOPE (v. 2014)+ PenEasy (v. 2015) Monte Carlo (MC) code, simulations were performed in order to obtain the mean glandular dose (MGD), the normalized MGD by incident air Kerma (DgN), and the glandular depth dose (GDD(z)). The geometry was based on a cranio-caudal mammographic examination. Monoenergetic and polyenergetic beams were implemented, for a breast thickness from 2 cm to 9 cm, with different compositions. Seven skin models were used: a 5mm adipose layer; a skin layer ranging from 5mm to 1.45 mm, a 1.45mm skin thickness with a subcutaneous adipose layer of 2mm and 3.55 mm. Results: The differences, for monoenergetic beams, are higher (up to 200%) for lower energies (8 keV), thicker and low glandular content breasts, decreasing to less than 5% at 40 keV. Without a skin layer, the differences reach a maximum of 1240%. The relative difference in DgN values for 1.45mm skin and 5mm adipose layers and polyenergetic beams varies from -14% to 12%. Conclusions: The implemented MC code is suitable for mammography dosimetry calculations. The skin models have major impacts on MGD values, and the results complement previous literature findings. The current protocols should be updated to include a more realistic skin model, which provides a reliable breast dose estimation.