Bayesian Tractography Using Geometric Shape Priors

被引:2
|
作者
Dong, Xiaoming [1 ]
Zhang, Zhengwu [2 ,3 ]
Srivastava, Anuj [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Stat & Appl Math Sci Inst SAMSI, Durham, NC USA
[3] Duke Univ, Dept Stat Sci, Durham, NC USA
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
基金
美国国家科学基金会;
关键词
tractograph; geometric shape analysis; Bayesian estimation; dMRI fiber tracts; active contours; FIBER TRACTOGRAPHY; OBJECT BOUNDARIES; ACTIVE CONTOURS; MRI DATA; BRAIN; TRACKING; IMAGES; SEGMENTATION; CONNECTIVITY; PARCELLATION;
D O I
10.3389/fnins.2017.00483
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The problem of estimating neuronal fiber tracts connecting different brain regions is important for various types of brain studies, including understanding brain functionality and diagnosing cognitive impairments. The popular techniques for tractography are mostly sequential-tracts are grown sequentially following principal directions of local water diffusion profiles. Despite several advancements on this basic idea, the solutions easily get stuck in local solutions, and can't incorporate global shape information. We present a global approach where fiber tracts between regions of interest are initialized and updated via deformations based on gradients of a posterior energy. This energy has contributions from diffusion data, global shape models, and roughness penalty. The resulting tracts are relatively immune to issues such as tensor noise and fiber crossings, and achieve more interpretable tractography results. We demonstrate this framework using both simulated and real dMRI and HARDI data.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Adaptive Bayesian Procedures Using Random Series Priors
    Shen, Weining
    Ghosal, Subhashis
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) : 1194 - 1213
  • [42] A SOURCE OF BAYESIAN PRIORS
    OSHERSON, D
    SMITH, EE
    SHAFIR, E
    GUALTIEROTTI, A
    BIOLSI, K
    COGNITIVE SCIENCE, 1995, 19 (03) : 377 - 405
  • [43] Bayesian image segmentation using Gaussian field priors
    Figueiredo, MAT
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2005, 3757 : 74 - 89
  • [44] Tractography-based priors for dynamic causal models
    Stephan, Klaas Enno
    Tittgemeyer, Marc
    Knoesche, Thomas R.
    Moran, Rosalyn J.
    Friston, Karl J.
    NEUROIMAGE, 2009, 47 (04) : 1628 - 1638
  • [45] Affine-invariant geometric shape priors for region-based active contours
    Foulonneau, Alban
    Charbonnier, Pierre
    Heitz, Fabrice
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (08) : 1352 - 1357
  • [46] A Bayesian framework for global tractography
    Jbabdi, S.
    Woolrich, M. W.
    Andersson, J. L. R.
    Behrens, T. E. J.
    NEUROIMAGE, 2007, 37 (01) : 116 - 129
  • [47] Tracking video objects using active contours and geometric priors
    Gastaud, M
    Barlaud, M
    Aubert, G
    Digital Media: Processing Multimedia Interactive Services, 2003, : 170 - 175
  • [48] Automatic segmentation of overlapping fish using shape priors
    Clausen, Sigmund
    Greiner, Katharina
    Andersen, Odd
    Lie, Knut-Andreas
    Schulerud, Helene
    Kavlil, Tom
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 11 - +
  • [49] Segmentation of Building Facades Using Procedural Shape Priors
    Teboul, Olivier
    Simon, Loic
    Koutsourakis, Panagiotis
    Paragios, Nikos
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3105 - 3112
  • [50] Object localization/segmentation using generic shape priors
    Fussenegger, Michael
    Opelt, Andreas
    Pinz, Axel
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 41 - +