Bayesian Tractography Using Geometric Shape Priors

被引:2
|
作者
Dong, Xiaoming [1 ]
Zhang, Zhengwu [2 ,3 ]
Srivastava, Anuj [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Stat & Appl Math Sci Inst SAMSI, Durham, NC USA
[3] Duke Univ, Dept Stat Sci, Durham, NC USA
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
基金
美国国家科学基金会;
关键词
tractograph; geometric shape analysis; Bayesian estimation; dMRI fiber tracts; active contours; FIBER TRACTOGRAPHY; OBJECT BOUNDARIES; ACTIVE CONTOURS; MRI DATA; BRAIN; TRACKING; IMAGES; SEGMENTATION; CONNECTIVITY; PARCELLATION;
D O I
10.3389/fnins.2017.00483
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The problem of estimating neuronal fiber tracts connecting different brain regions is important for various types of brain studies, including understanding brain functionality and diagnosing cognitive impairments. The popular techniques for tractography are mostly sequential-tracts are grown sequentially following principal directions of local water diffusion profiles. Despite several advancements on this basic idea, the solutions easily get stuck in local solutions, and can't incorporate global shape information. We present a global approach where fiber tracts between regions of interest are initialized and updated via deformations based on gradients of a posterior energy. This energy has contributions from diffusion data, global shape models, and roughness penalty. The resulting tracts are relatively immune to issues such as tensor noise and fiber crossings, and achieve more interpretable tractography results. We demonstrate this framework using both simulated and real dMRI and HARDI data.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Bayesian compressive sensing using reweighted laplace priors
    Jiang, Tao
    Zhang, XiaoWei
    Li, Yingsong
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 97 : 178 - 184
  • [32] Bayesian multiple comparisons using Dirichlet process priors
    Gopalan, R
    Berry, DA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1130 - 1139
  • [33] Sparse Bayesian Learning Using Adaptive LASSO Priors
    Bai Z.-L.
    Shi L.-M.
    Sun J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (05): : 1193 - 1208
  • [34] Bayesian analysis for the Lomax model using noninformative priors
    He, Daojiang
    Sun, Dongchu
    Zhu, Qing
    STATISTICAL THEORY AND RELATED FIELDS, 2023, 7 (01) : 61 - 68
  • [35] Efficient Bayesian phase estimation using mixed priors
    van den Berg, Ewout
    QUANTUM, 2021, 5
  • [36] FAST BAYESIAN COMPRESSIVE SENSING USING LAPLACE PRIORS
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2873 - +
  • [37] BAYESIAN COMPRESSED SENSING USING GENERALIZED CAUCHY PRIORS
    Carrillo, Rafael E.
    Aysal, Tuncer C.
    Barner, Kenneth E.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4058 - 4061
  • [38] A BAYESIAN MIXTURE CURE MODEL USING INFORMATIVE PRIORS
    Pham, H. A.
    Heeg, B.
    Garcia, A.
    Postma, M.
    Ouwens, D. M.
    VALUE IN HEALTH, 2019, 22 : S516 - S516
  • [39] Adaptive Bayesian classification using noninformative Dirichlet priors
    Lynch, RS
    Willett, PK
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2812 - 2815
  • [40] Bayesian Compressive Sensing Using Normal Product Priors
    Zhou, Zhou
    Liu, Kaihui
    Fang, Jun
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (05) : 583 - 587