Bayesian Tractography Using Geometric Shape Priors

被引:2
|
作者
Dong, Xiaoming [1 ]
Zhang, Zhengwu [2 ,3 ]
Srivastava, Anuj [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Stat & Appl Math Sci Inst SAMSI, Durham, NC USA
[3] Duke Univ, Dept Stat Sci, Durham, NC USA
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
基金
美国国家科学基金会;
关键词
tractograph; geometric shape analysis; Bayesian estimation; dMRI fiber tracts; active contours; FIBER TRACTOGRAPHY; OBJECT BOUNDARIES; ACTIVE CONTOURS; MRI DATA; BRAIN; TRACKING; IMAGES; SEGMENTATION; CONNECTIVITY; PARCELLATION;
D O I
10.3389/fnins.2017.00483
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The problem of estimating neuronal fiber tracts connecting different brain regions is important for various types of brain studies, including understanding brain functionality and diagnosing cognitive impairments. The popular techniques for tractography are mostly sequential-tracts are grown sequentially following principal directions of local water diffusion profiles. Despite several advancements on this basic idea, the solutions easily get stuck in local solutions, and can't incorporate global shape information. We present a global approach where fiber tracts between regions of interest are initialized and updated via deformations based on gradients of a posterior energy. This energy has contributions from diffusion data, global shape models, and roughness penalty. The resulting tracts are relatively immune to issues such as tensor noise and fiber crossings, and achieve more interpretable tractography results. We demonstrate this framework using both simulated and real dMRI and HARDI data.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Spine and Individual Vertebrae Segmentation in Computed Tomography Images Using Geometric Flows and Shape Priors
    Khandelwal, Pulkit
    Collins, D. Louis
    Siddiqi, Kaleem
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [12] Using strong shape priors for stereo
    Sun, Yunda
    Kohli, Pushmeet
    Bray, Matthieu
    Torr, Philip H. S.
    COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, 4338 : 882 - +
  • [13] Accurate floorplan reconstruction using geometric priors
    Cai, Ruifan
    Li, Honglin
    Xie, Jun
    Jin, Xiaogang
    COMPUTERS & GRAPHICS-UK, 2022, 102 : 360 - 369
  • [14] Using a geometric formulation of annular-like shape priors for constraining variational level-sets
    Alessandrini, M.
    Dietenbeck, T.
    Basset, O.
    Friboulet, D.
    Bernard, O.
    PATTERN RECOGNITION LETTERS, 2011, 32 (09) : 1240 - 1249
  • [15] USING A GEOMETRIC FORMULATION OF ANNULAR-LIKE SHAPE PRIORS FOR CONSTRAINING VARIATIONAL LEVEL-SETS
    Alessandrini, M.
    Dietenbeck, T.
    Basset, O.
    Friboulet, D.
    Bernard, O.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 669 - 672
  • [16] CEREBRAL WHITE MATTER SEGMENTATION FROM MRI USING PROBABILISTIC GRAPH CUTS AND GEOMETRIC SHAPE PRIORS
    Chowdhury, Ananda S.
    Rudra, Ashish K.
    Sen, Mainak
    Elnakib, Ahmed
    El-Baz, Ayman
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3649 - 3652
  • [17] Bayesian wavelet denoising using Besov priors
    Leporini, D
    Krim, H
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 144 - 147
  • [18] BAYESIAN AVAILABILITY USING GAMMA DISTRIBUTED PRIORS
    KUO, W
    IIE TRANSACTIONS, 1985, 17 (02) : 132 - 140
  • [19] Bayesian source identification using local priors
    Aucejo, M.
    De Smet, O.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 66-67 : 120 - 136
  • [20] Bayesian model selection using encompassing priors
    Klugkist, I
    Kato, B
    Hoijtink, H
    STATISTICA NEERLANDICA, 2005, 59 (01) : 57 - 69