Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

被引:107
|
作者
Hendriks, Iris E. [1 ]
Duarte, Carlos M. [1 ,2 ,3 ]
Olsen, Ylva S. [2 ,3 ]
Steckbauer, Alexandra [1 ]
Ramajo, Laura [1 ,4 ]
Moore, Tommy S. [1 ]
Trotter, Julie A. [2 ,5 ]
McCulloch, Malcolm [2 ,5 ,6 ]
机构
[1] IMEDEA, CSIC UIB, Inst Mediterraneo Estudios Avanzados, Global Change Dept, Esporles 07190, Mallorca, Spain
[2] Univ Western Australia, UWA Oceans Inst, Crawley 6009, Australia
[3] Univ Western Australia, Sch Plant Biol, Crawley 6009, Australia
[4] Univ Santo Tomas, Fac Ciencias, Lab Ecol & Cambio Climatico, Santiago, Chile
[5] Univ Western Australia, Sch Earth & Environm, Crawley 6009, Australia
[6] Univ Western Australia, Sch Earth & Environm, ARC Ctr Excellence Coral Reef Studies, Crawley 6009, Australia
基金
澳大利亚研究理事会;
关键词
Ocean acidification; Biological interactions; Calcification; Homeostasis; pH variability; ACID-BASE-BALANCE; CO2; ENRICHMENT; SEAGRASS PHOTOSYNTHESIS; SEAWATER ACIDIFICATION; CARBONATE SATURATION; MACROCYSTIS-PYRIFERA; SCLERACTINIAN CORAL; CALCIUM-CARBONATE; GROWTH-RATE; CALCIFICATION;
D O I
10.1016/j.ecss.2014.07.019
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (similar to 0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:A1 / A8
页数:8
相关论文
共 50 条
  • [41] Ocean acidification impacts in select Pacific Basin coral reef ecosystems
    Lebrec, Marine
    Stefanski, Stephanie
    Gates, Ruth
    Acar, Sevil
    Golbuu, Yimmang
    Claudel-Rusin, Astrid
    Kurihara, Haruko
    Rehdanz, Katrin
    Paugam-Baudoin, Delphine
    Tsunoda, Tomohiko
    Swarzenski, Peter W.
    REGIONAL STUDIES IN MARINE SCIENCE, 2019, 28
  • [42] Simplification, not "tropicalization", of temperate marine ecosystems under ocean warming and acidification
    Agostini, Sylvain
    Harvey, Ben P.
    Milazzo, Marco
    Wada, Shigeki
    Kon, Koetsu
    Floc'h, Nicolas
    Komatsu, Kosei
    Kuroyama, Mayumi
    Hall-Spencer, Jason M.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (19) : 4771 - 4784
  • [43] Ocean acidification changes the structure of an Antarctic coastal protistan community
    Hancock, Alyce M.
    Davidson, Andrew T.
    McKinlay, John
    McMinn, Andrew
    Schulz, Kai G.
    van den Enden, Rick L.
    BIOGEOSCIENCES, 2018, 15 (07) : 2393 - 2410
  • [44] Simulated ocean acidification reveals winners and losers in coastal phytoplankton
    Bach, Lennart T.
    Alvarez-Fernandez, Santiago
    Hornick, Thomas
    Stuhr, Annegret
    Riebesell, Ulf
    PLOS ONE, 2017, 12 (11):
  • [45] Overstated Potential for Seagrass Meadows to Mitigate Coastal Ocean Acidification
    Van Dam, Bryce
    Lopes, Christian
    Zeller, Mary A.
    Ribas-Ribas, Mariana
    Wang, Hongjie
    Thomas, Helmuth
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [46] BIOLOGICAL RESPONSES OF MULTIPLE NORTHEAST TAXA TO OCEAN ACIDIFICATION
    White, Meredith M.
    Candelmo, Allison C.
    Chambers, R. Christopher
    Gobler, Christopher J.
    King, Andrew L.
    Price, Nichole N.
    Wahle, Richard A.
    Waller, Jesica D.
    JOURNAL OF SHELLFISH RESEARCH, 2015, 34 (02): : 725 - 725
  • [47] Introduction to Coastal Management Journal Special Issue on Ocean Acidification
    Laschever, Eric
    Turner, Jessi
    COASTAL MANAGEMENT, 2021, 49 (05) : 431 - 435
  • [48] Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems
    Mostofa, Khan M. G.
    Liu, Cong-Qiang
    Zhai, WeiDong
    Minella, Marco
    Vione, Davide
    Gao, Kunshan
    Minakata, Daisuke
    Arakaki, Takemitsu
    Yoshioka, Takahito
    Hayakawa, Kazuhide
    Konohira, Eiichi
    Tanoue, Eiichiro
    Akhand, Anirban
    Chanda, Abhra
    Wang, Baoli
    Sakugawa, Hiroshi
    BIOGEOSCIENCES, 2016, 13 (06) : 1767 - 1786
  • [49] Data compilation on the biological response to ocean acidification: an update
    Yang, Y.
    Hansson, L.
    Gattuso, J. -P.
    EARTH SYSTEM SCIENCE DATA, 2016, 8 (01) : 79 - 87
  • [50] Molecular basis of ocean acidification sensitivity and adaptation in Mytilus galloprovincialis
    Kapsenberg, Lydia
    Bitter, Mark C.
    Miglioli, Angelica
    Aparicio-Estalella, Claudia
    Pelejero, Carles
    Gattuso, Jean-Pierre
    Dumollard, Remi
    ISCIENCE, 2022, 25 (08)