Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

被引:107
|
作者
Hendriks, Iris E. [1 ]
Duarte, Carlos M. [1 ,2 ,3 ]
Olsen, Ylva S. [2 ,3 ]
Steckbauer, Alexandra [1 ]
Ramajo, Laura [1 ,4 ]
Moore, Tommy S. [1 ]
Trotter, Julie A. [2 ,5 ]
McCulloch, Malcolm [2 ,5 ,6 ]
机构
[1] IMEDEA, CSIC UIB, Inst Mediterraneo Estudios Avanzados, Global Change Dept, Esporles 07190, Mallorca, Spain
[2] Univ Western Australia, UWA Oceans Inst, Crawley 6009, Australia
[3] Univ Western Australia, Sch Plant Biol, Crawley 6009, Australia
[4] Univ Santo Tomas, Fac Ciencias, Lab Ecol & Cambio Climatico, Santiago, Chile
[5] Univ Western Australia, Sch Earth & Environm, Crawley 6009, Australia
[6] Univ Western Australia, Sch Earth & Environm, ARC Ctr Excellence Coral Reef Studies, Crawley 6009, Australia
基金
澳大利亚研究理事会;
关键词
Ocean acidification; Biological interactions; Calcification; Homeostasis; pH variability; ACID-BASE-BALANCE; CO2; ENRICHMENT; SEAGRASS PHOTOSYNTHESIS; SEAWATER ACIDIFICATION; CARBONATE SATURATION; MACROCYSTIS-PYRIFERA; SCLERACTINIAN CORAL; CALCIUM-CARBONATE; GROWTH-RATE; CALCIFICATION;
D O I
10.1016/j.ecss.2014.07.019
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (similar to 0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:A1 / A8
页数:8
相关论文
共 50 条
  • [31] Adaptation of a globally important coccolithophore to ocean warming and acidification
    Lothar Schlüter
    Kai T. Lohbeck
    Magdalena A. Gutowska
    Joachim P. Gröger
    Ulf Riebesell
    Thorsten B. H. Reusch
    Nature Climate Change, 2014, 4 : 1024 - 1030
  • [32] Regional adaptation defines sensitivity to future ocean acidification
    Piero Calosi
    Sedercor Melatunan
    Lucy M. Turner
    Yuri Artioli
    Robert L. Davidson
    Jonathan J. Byrne
    Mark R. Viant
    Stephen Widdicombe
    Simon D. Rundle
    Nature Communications, 8
  • [33] Adaptation of a globally important coccolithophore to ocean warming and acidification
    Schlueter, Lothar
    Lohbeck, Kai T.
    Gutowska, Magdalena A.
    Groeger, Joachim P.
    Riebesell, Ulf
    Reusch, Thorsten B. H.
    NATURE CLIMATE CHANGE, 2014, 4 (11) : 1024 - 1030
  • [34] Regional adaptation defines sensitivity to future ocean acidification
    Calosi, Piero
    Melatunan, Sedercor
    Turner, Lucy M.
    Artioli, Yuri
    Davidson, Robert L.
    Byrne, Jonathan J.
    Viant, Mark R.
    Widdicombe, Stephen
    Rundle, Simon D.
    NATURE COMMUNICATIONS, 2017, 8
  • [35] Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?
    Feng, Ellias Y.
    Keller, David P.
    Koeve, Wolfgang
    Oschlies, Andreas
    ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (07):
  • [36] A baseline assessment of coastal pH variability in a temperate South African embayment: implications for biological ocean acidification research
    Edworthy, C.
    Potts, W. M.
    Dupont, S.
    Duncan, M., I
    Bornman, T. G.
    James, N. C.
    AFRICAN JOURNAL OF MARINE SCIENCE, 2022, 44 (04) : 367 - 381
  • [37] Impacts of ocean acidification in naturally variable coral reef flat ecosystems
    Shaw, Emily C.
    McNeil, Ben I.
    Tilbrook, Bronte
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2012, 117
  • [38] Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life
    Gobler, Christopher J.
    Baumann, Hannes
    BIOLOGY LETTERS, 2016, 12 (05)
  • [39] EFFECTS OF PHYSICAL PROCESSES ON PLANKTONIC ECOSYSTEMS IN THE COASTAL OCEAN
    DENMAN, KL
    OCEANOGRAPHY AND MARINE BIOLOGY, 1984, 22 : 125 - +
  • [40] Ocean and Coastal Acidification off New England and Nova Scotia
    Gledhill, Dwight K.
    White, Meredith M.
    Salisbury, Joseph
    Thomas, Helmuth
    Mlsna, Ivy
    Liebman, Matthew
    Mook, Bill
    Grear, Jason
    Candelmo, Allison C.
    Chambers, R. Christopher
    Gobler, Christopher J.
    Hunt, Christopher W.
    King, Andrew L.
    Price, Nichole N.
    Signorini, Sergio R.
    Standoff, Esperanza
    Stymiest, Cassie
    Wahle, Richard A.
    Waller, Jesica D.
    Rebuck, Nathan D.
    Wang, Zhaohui A.
    Capson, Todd L.
    Morrison, J. Ruairidh
    Cooley, Sarah R.
    Doney, Scott C.
    OCEANOGRAPHY, 2015, 28 (02) : 182 - 197