Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

被引:107
|
作者
Hendriks, Iris E. [1 ]
Duarte, Carlos M. [1 ,2 ,3 ]
Olsen, Ylva S. [2 ,3 ]
Steckbauer, Alexandra [1 ]
Ramajo, Laura [1 ,4 ]
Moore, Tommy S. [1 ]
Trotter, Julie A. [2 ,5 ]
McCulloch, Malcolm [2 ,5 ,6 ]
机构
[1] IMEDEA, CSIC UIB, Inst Mediterraneo Estudios Avanzados, Global Change Dept, Esporles 07190, Mallorca, Spain
[2] Univ Western Australia, UWA Oceans Inst, Crawley 6009, Australia
[3] Univ Western Australia, Sch Plant Biol, Crawley 6009, Australia
[4] Univ Santo Tomas, Fac Ciencias, Lab Ecol & Cambio Climatico, Santiago, Chile
[5] Univ Western Australia, Sch Earth & Environm, Crawley 6009, Australia
[6] Univ Western Australia, Sch Earth & Environm, ARC Ctr Excellence Coral Reef Studies, Crawley 6009, Australia
基金
澳大利亚研究理事会;
关键词
Ocean acidification; Biological interactions; Calcification; Homeostasis; pH variability; ACID-BASE-BALANCE; CO2; ENRICHMENT; SEAGRASS PHOTOSYNTHESIS; SEAWATER ACIDIFICATION; CARBONATE SATURATION; MACROCYSTIS-PYRIFERA; SCLERACTINIAN CORAL; CALCIUM-CARBONATE; GROWTH-RATE; CALCIFICATION;
D O I
10.1016/j.ecss.2014.07.019
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (similar to 0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:A1 / A8
页数:8
相关论文
共 50 条
  • [21] Managing ocean and coastal areas, ecosystems, and resources
    Sandifer, P
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2004, 38 (04) : 35 - 41
  • [22] Future ocean acidification will be amplified by hypoxia in coastal habitats
    Melzner, Frank
    Thomsen, Joern
    Koeve, Wolfgang
    Oschlies, Andreas
    Gutowska, Magdalena A.
    Bange, Hermann W.
    Hansen, Hans Peter
    Koertzinger, Arne
    MARINE BIOLOGY, 2013, 160 (08) : 1875 - 1888
  • [23] Future ocean acidification will be amplified by hypoxia in coastal habitats
    Frank Melzner
    Jörn Thomsen
    Wolfgang Koeve
    Andreas Oschlies
    Magdalena A. Gutowska
    Hermann W. Bange
    Hans Peter Hansen
    Arne Körtzinger
    Marine Biology, 2013, 160 : 1875 - 1888
  • [24] The challenges of detecting and attributing ocean acidification impacts on marine ecosystems
    Doo, Steve S.
    Kealoha, Andrea
    Andersson, Andreas
    Cohen, Anne L.
    Hicks, Tacey L.
    Johnson, Zackary, I
    Long, Matthew H.
    McElhany, Paul
    Mollica, Nathaniel
    Shamberger, Kathryn E. F.
    Silbiger, Nyssa J.
    Takeshita, Yuichiro
    Busch, D. Shallin
    ICES JOURNAL OF MARINE SCIENCE, 2020, 77 (7-8) : 2411 - 2422
  • [25] Impact of ocean acidification on marine ecosystems: educational challenges and innovations
    G. Fauville
    R. Säljö
    S. Dupont
    Marine Biology, 2013, 160 : 1863 - 1874
  • [26] Impact of ocean acidification on marine ecosystems: educational challenges and innovations
    Fauville, G.
    Saljo, R.
    Dupont, S.
    MARINE BIOLOGY, 2013, 160 (08) : 1863 - 1874
  • [27] Coral Reef Ecosystems under Climate Change and Ocean Acidification
    Hoegh-Guldberg, Ove
    Poloczanska, Elvira S.
    Skirving, William
    Dove, Sophie
    FRONTIERS IN MARINE SCIENCE, 2017, 4
  • [28] The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities
    Doney, Scott C.
    Busch, D. Shallin
    Cooley, Sarah R.
    Kroeker, Kristy J.
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 45, 2020, 45 : 83 - 112
  • [29] Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation
    Langer, Julia A. F.
    Meunier, Cedric L.
    Ecker, Ursula
    Horn, Henriette G.
    Schwenk, Klaus
    Boersma, Maarten
    MARINE ECOLOGY PROGRESS SERIES, 2019, 619 : 35 - 51
  • [30] Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification
    Sunday, Jennifer M.
    Crim, Ryan N.
    Harley, Christopher D. G.
    Hart, Michael W.
    PLOS ONE, 2011, 6 (08):