Slice Fueter-Regular Functions

被引:4
|
作者
Ghiloni, Riccardo [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, Italy
关键词
Slice functions; Fueter-regular functions; Vekua systems; Slice regular functions; Axially monogenic functions; Dirac operators; MONOGENIC FUNCTIONS; THEOREM; SERIES;
D O I
10.1007/s12220-021-00709-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Slice Fueter-regular functions, originally called slice Dirac-regular functions, are generalized holomorphic functions defined over the octonion algebra O, recently introduced by M. Jin, G. Ren and I. Sabadini. A function f : Omega(D) subset of O -> O is called (quaternionic) slice Fueter-regular if, given any quaternionic subalgebra H-I of O generated by a pair I = (I, J) of orthogonal imaginary units I and J (H-I is a 'quaternionic slice' of O), the restriction of f to H-I belongs to the kernel of the corresponding Cauchy-Riemann-Fueter operator partial derivative/partial derivative x(0) + I partial derivative/partial derivative x(1) + J partial derivative/partial derivative x(2) +(I J)partial derivative/partial derivative x(3). The goal of this paper is to show that slice Fueter-regular functions are standard (complex) slice functions, whose stem functions satisfy a Vekua system having exactly the same form of the one characterizing axially monogenic functions of degree zero. The mentioned standard sliceness of slice Fueter-regular functions is able to reveal their 'holomorphic nature': slice Fueter-regular functions have Cauchy integral formulas, Taylor and Laurent series expansions, and a version of Maximum Modulus Principle, and each of these properties is global in the sense that it is true on genuine 8-dimesional domains of O. Slice Fueter-regular functions are real analytic. Furthermore, we introduce the global concepts of spherical Dirac operator Gamma and of slice Fueter operator (theta) over bar (F) over octonions, which allow to characterize the slice Fueter-regular functions as the l(2)-functions in the kernel of (theta) over bar (F) satisfying a second order differential system associated with Gamma.
引用
收藏
页码:11988 / 12033
页数:46
相关论文
共 50 条
  • [1] Slice Fueter-Regular Functions
    Riccardo Ghiloni
    The Journal of Geometric Analysis, 2021, 31 : 11988 - 12033
  • [2] Which Fueter-Regular Functions are Holomorphic?
    Perotti, Alessandro
    Stoppato, Caterina
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [3] Which Fueter-Regular Functions are Holomorphic?Which Fueter-Regular Functions are Holomorphic?A. Perotti, C. Stoppato
    Alessandro Perotti
    Caterina Stoppato
    The Journal of Geometric Analysis, 2025, 35 (1):
  • [4] Which Fueter-Regular Functions are Holomorphic? (vol 35, 27, 2025)
    Perotti, Alessandro
    Stoppato, Caterina
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [5] On the Regeneration of Moisil-Fueter Regular Functions
    Marinov, Marin S.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '09), 2009, 1184 : 218 - 221
  • [6] On the global operator and Fueter mapping theorem for slice polyanalytic functions
    Alpay, Daniel
    Diki, Kamal
    Sabadini, Irene
    ANALYSIS AND APPLICATIONS, 2021, 19 (06) : 941 - 964
  • [7] Sheaves of slice regular functions
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 949 - 958
  • [8] The Harmonicity of Slice Regular Functions
    Bisi, Cinzia
    Winkelmann, Joerg
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) : 7773 - 7811
  • [9] The Harmonicity of Slice Regular Functions
    Cinzia Bisi
    Jörg Winkelmann
    The Journal of Geometric Analysis, 2021, 31 : 7773 - 7811
  • [10] Singularities of slice regular functions
    Stoppato, Caterina
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (10) : 1274 - 1293