The Harmonicity of Slice Regular Functions

被引:0
|
作者
Cinzia Bisi
Jörg Winkelmann
机构
[1] Università di Ferrara,Dipartimento di Matematica e Informatica
[2] Ruhr-Universität Bochum,Lehrstuhl Analysis II, Fakultät für Mathematik
来源
关键词
Slice regular functions; Harmonicity; Laplacians; Mean value theorems; Quaternionic analysis; Poisson formula; Jensen formula; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate harmonicity, Laplacians, mean value theorems, and related topics in the context of quaternionic analysis. We observe that a Mean Value Formula for slice regular functions holds true and it is a consequence of the well-known Representation Formula for slice regular functions over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document}. Motivated by this observation, we have constructed three order-two differential operators in the kernel of which slice regular functions are, answering positively to the question: is a slice regular function over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} (analogous to an holomorphic function over C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}) ”harmonic” in some sense, i.e., is it in the kernel of some order-two differential operator over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document}? Finally, some applications are deduced such as a Poisson Formula for slice regular functions over H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}$$\end{document} and a Jensen’s Formula for semi-regular ones.
引用
收藏
页码:7773 / 7811
页数:38
相关论文
共 50 条