Slice Fueter-Regular Functions

被引:4
|
作者
Ghiloni, Riccardo [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, Italy
关键词
Slice functions; Fueter-regular functions; Vekua systems; Slice regular functions; Axially monogenic functions; Dirac operators; MONOGENIC FUNCTIONS; THEOREM; SERIES;
D O I
10.1007/s12220-021-00709-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Slice Fueter-regular functions, originally called slice Dirac-regular functions, are generalized holomorphic functions defined over the octonion algebra O, recently introduced by M. Jin, G. Ren and I. Sabadini. A function f : Omega(D) subset of O -> O is called (quaternionic) slice Fueter-regular if, given any quaternionic subalgebra H-I of O generated by a pair I = (I, J) of orthogonal imaginary units I and J (H-I is a 'quaternionic slice' of O), the restriction of f to H-I belongs to the kernel of the corresponding Cauchy-Riemann-Fueter operator partial derivative/partial derivative x(0) + I partial derivative/partial derivative x(1) + J partial derivative/partial derivative x(2) +(I J)partial derivative/partial derivative x(3). The goal of this paper is to show that slice Fueter-regular functions are standard (complex) slice functions, whose stem functions satisfy a Vekua system having exactly the same form of the one characterizing axially monogenic functions of degree zero. The mentioned standard sliceness of slice Fueter-regular functions is able to reveal their 'holomorphic nature': slice Fueter-regular functions have Cauchy integral formulas, Taylor and Laurent series expansions, and a version of Maximum Modulus Principle, and each of these properties is global in the sense that it is true on genuine 8-dimesional domains of O. Slice Fueter-regular functions are real analytic. Furthermore, we introduce the global concepts of spherical Dirac operator Gamma and of slice Fueter operator (theta) over bar (F) over octonions, which allow to characterize the slice Fueter-regular functions as the l(2)-functions in the kernel of (theta) over bar (F) satisfying a second order differential system associated with Gamma.
引用
收藏
页码:11988 / 12033
页数:46
相关论文
共 50 条
  • [21] Spherical Coefficients of Slice Regular Functions
    Amedeo Altavilla
    Results in Mathematics, 2021, 76
  • [22] Regular functions of several quaternionic variables and the Cauchy-Fueter complex
    W. W. Adams
    C. A. Berenstein
    P. Loustaunau
    I. Sabadini
    D. C. Struppa
    The Journal of Geometric Analysis, 1999, 9 (1): : 1 - 15
  • [23] Slice regular functions in several variables
    Ghiloni, Riccardo
    Perotti, Alessandro
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 295 - 351
  • [24] Slice regular functions in several variables
    Riccardo Ghiloni
    Alessandro Perotti
    Mathematische Zeitschrift, 2022, 302 : 295 - 351
  • [25] The Bohr Theorem for slice regular functions
    Della Rocchetta, Chiara
    Gentili, Graziano
    Sarfatti, Giulia
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2093 - 2105
  • [26] Caratheodory Theorems for Slice Regular Functions
    Ren, Guangbin
    Wang, Xieping
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (05) : 1229 - 1243
  • [27] Holomorphicity of Slice-Regular Functions
    Samuele Mongodi
    Complex Analysis and Operator Theory, 2020, 14
  • [28] Adaptive Fourier Decomposition of Slice Regular Functions
    Jin, Ming
    Leong, Ieng Tak
    Qian, Tao
    Ren, Guangbin
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (01)
  • [29] Slice regular functions on real alternative algebras
    Ghiloni, R.
    Perotti, A.
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1662 - 1691
  • [30] On Some Quaternionic Generalized Slice Regular Functions
    J. Oscar González Cervantes
    Advances in Applied Clifford Algebras, 2022, 32