Slice Fueter-Regular Functions

被引:4
|
作者
Ghiloni, Riccardo [1 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, Italy
关键词
Slice functions; Fueter-regular functions; Vekua systems; Slice regular functions; Axially monogenic functions; Dirac operators; MONOGENIC FUNCTIONS; THEOREM; SERIES;
D O I
10.1007/s12220-021-00709-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Slice Fueter-regular functions, originally called slice Dirac-regular functions, are generalized holomorphic functions defined over the octonion algebra O, recently introduced by M. Jin, G. Ren and I. Sabadini. A function f : Omega(D) subset of O -> O is called (quaternionic) slice Fueter-regular if, given any quaternionic subalgebra H-I of O generated by a pair I = (I, J) of orthogonal imaginary units I and J (H-I is a 'quaternionic slice' of O), the restriction of f to H-I belongs to the kernel of the corresponding Cauchy-Riemann-Fueter operator partial derivative/partial derivative x(0) + I partial derivative/partial derivative x(1) + J partial derivative/partial derivative x(2) +(I J)partial derivative/partial derivative x(3). The goal of this paper is to show that slice Fueter-regular functions are standard (complex) slice functions, whose stem functions satisfy a Vekua system having exactly the same form of the one characterizing axially monogenic functions of degree zero. The mentioned standard sliceness of slice Fueter-regular functions is able to reveal their 'holomorphic nature': slice Fueter-regular functions have Cauchy integral formulas, Taylor and Laurent series expansions, and a version of Maximum Modulus Principle, and each of these properties is global in the sense that it is true on genuine 8-dimesional domains of O. Slice Fueter-regular functions are real analytic. Furthermore, we introduce the global concepts of spherical Dirac operator Gamma and of slice Fueter operator (theta) over bar (F) over octonions, which allow to characterize the slice Fueter-regular functions as the l(2)-functions in the kernel of (theta) over bar (F) satisfying a second order differential system associated with Gamma.
引用
收藏
页码:11988 / 12033
页数:46
相关论文
共 50 条
  • [31] Adaptive Fourier Decomposition of Slice Regular Functions
    Ming Jin
    Ieng Tak Leong
    Tao Qian
    Guangbin Ren
    Advances in Applied Clifford Algebras, 2023, 33
  • [32] Transcendental operators acting on slice regular functions
    de Fabritiis, Chiara
    CONCRETE OPERATORS, 2022, 9 (01): : 6 - 18
  • [33] Slice regular functions of several Clifford variables
    Ghiloni, R.
    Perotti, A.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 734 - 738
  • [34] A Phragmen - Lindelof principle for slice regular functions
    Gentili, Graziano
    Stoppato, Caterina
    Struppa, Daniele C.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (04) : 749 - 759
  • [35] Carathéodory Theorems for Slice Regular Functions
    Guangbin Ren
    Xieping Wang
    Complex Analysis and Operator Theory, 2015, 9 : 1229 - 1243
  • [36] Global differential equations for slice regular functions
    Ghiloni, Riccardo
    Perotti, Alessandro
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) : 561 - 573
  • [37] On some splitting properties of slice regular functions
    Oscar Gonzalez-Cervantes, J.
    Sabadini, Irene
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (09) : 1393 - 1409
  • [38] The Argument Principle for Quaternionic Slice Regular Functions
    Vlacci, Fabio
    MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (01) : 67 - 77
  • [39] Fractional Slice Regular Functions of a Quaternionic Variable
    Gonzalez-Cervantes, Jose Oscar
    Bory-Reyes, Juan
    Sabadini, Irene
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [40] On Fiber Bundles and Quaternionic Slice Regular Functions
    Oscar Gonzalez-Cervantes, J.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (05)