CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires

被引:13
|
作者
Berencen, Yonder [1 ]
Prucnal, Slawomir [1 ]
Moeller, Wolfhard [1 ]
Huebner, Rene [1 ]
Rebohle, Lars [1 ]
Boettger, Roman [1 ]
Glaser, Markus [2 ]
Schoenherr, Tommy [1 ]
Yuan, Ye [1 ]
Wang, Mao [1 ]
Georgiev, Yordan M. [1 ]
Erbe, Artur [1 ]
Lugstein, Alois [2 ]
Helm, Manfred [1 ,3 ]
Zhou, Shengqiang [1 ]
Skorupa, Wolfgang [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Vienna Univ Technol, Inst Solid State Elect, Floragasse 7, A-1040 Vienna, Austria
[3] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
来源
ADVANCED MATERIALS INTERFACES | 2018年 / 5卷 / 11期
关键词
flash lamp annealing; hyperdoping; intermediate band; ion implantation; nanowires;
D O I
10.1002/admi.201800101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and the conduction bands. Recently, bulk Si hyperdoped with chalcogens or transition metals is demonstrated to be an appropriate intermediate-band material for Si-based short-wavelength infrared photodetectors. Intermediate-band nanowires can potentially be used instead of bulk materials to overcome the Shockley-Queisser limit and to improve efficiency in solar cells, but fundamental scientific questions in hyperdoping Si nanowires require experimental verification. The development of a method for obtaining controlled hyperdoping levels at the nanoscale concomitant with the electrical activation of dopants is, therefore, vital to understanding these issues. Here, this paper shows a complementary metal-oxide-semiconductor (CMOS)-compatible technique based on nonequilibrium processing for the controlled doping of Si at the nanoscale with dopant concentrations several orders of magnitude greater than the equilibrium solid solubility. Through the nanoscale spatially controlled implantation of dopants, and a bottom-up template-assisted solid phase recrystallization of the nanowires with the use of millisecond-flash lamp annealing, Se-hyperdoped Si/SiO2 core/shell nanowires are formed that have a room-temperature sub-bandgap optoelectronic photoresponse when configured as a photoconductor device.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Nanostructured Silicon Photonics Devices Fabricated by CMOS-Compatible Process
    Baba, Toshihiko
    [J]. 2012 PHOTONICS GLOBAL CONFERENCE (PGC), 2012,
  • [22] CMOS-compatible Athermal Tunable Silicon Optical Lattice Filters
    Lu, Liangjun
    Zhou, Linjie
    Sun, Xiaomeng
    Xie, Jingya
    Zou, Zhi
    Li, Xinwan
    Chen, Jianping
    [J]. 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC), 2013,
  • [23] CMOS-compatible catalytic growth of graphene on a silicon dioxide substrate
    Lee, Jae-Hyun
    Kim, Min-Sung
    Lim, Jae-Young
    Jung, Su-Ho
    Kang, Seog-Gyun
    Shin, Hyeon-Jin
    Choi, Jae-Young
    Hwang, Sung-Woo
    Whang, Dongmok
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (05)
  • [24] Large-scale CMOS-compatible process for silicon nanowires growth and BC8 phase formation
    Mazzetta, I
    Rigoni, F.
    Irrera, F.
    Riello, P.
    Quaranta, S.
    Latini, A.
    Palma, F.
    [J]. SOLID-STATE ELECTRONICS, 2021, 186
  • [25] CMOS-Compatible Wearable Sensors Fabricated Using Controlled Spalling
    Sakuma, Katsuyuki
    Hu, Huan
    Liu, Xiao Hu
    Ni, Jiamin
    Bedell, Stephen W.
    Webb, Bucknell
    Wright, Steven L.
    Lauro, Paul
    Latzko, Ken
    Agno, Marlon
    Tornello, James
    Knickerbocker, John U.
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (18) : 7868 - 7874
  • [26] CMOS-Compatible Gas Sensors
    Filipovic, L.
    Selberherr, S.
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2019), 2019, : 9 - 16
  • [27] CMOS-Compatible Spintronic Devices
    Sverdlov, Viktor
    Ghosh, Joydeep
    Makarov, Alexander
    Windbacher, Homas
    Selberherr, Siegfried
    [J]. 2015 30TH SYMPOSIUM ON MICROELECTRONICS TECHNOLOGY AND DEVICES (SBMICRO), 2015,
  • [28] CMOS-Compatible Optoelectronic Imagers
    Bi, Cheng
    Liu, Yanfei
    [J]. COATINGS, 2022, 12 (11)
  • [29] Optimization of high Q CMOS-compatible microwave inductors using silicon CMOS technology
    Park, M
    Lee, S
    Yu, HK
    Nam, KS
    [J]. 1997 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM: DIGEST OF TECHNICAL PAPERS, 1997, : 181 - 184
  • [30] Optimization of high Q CMOS-compatible microwave inductors using silicon CMOS technology
    Park, M
    Lee, SH
    Yu, HK
    Nam, KS
    [J]. 1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 129 - 132