CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires

被引:13
|
作者
Berencen, Yonder [1 ]
Prucnal, Slawomir [1 ]
Moeller, Wolfhard [1 ]
Huebner, Rene [1 ]
Rebohle, Lars [1 ]
Boettger, Roman [1 ]
Glaser, Markus [2 ]
Schoenherr, Tommy [1 ]
Yuan, Ye [1 ]
Wang, Mao [1 ]
Georgiev, Yordan M. [1 ]
Erbe, Artur [1 ]
Lugstein, Alois [2 ]
Helm, Manfred [1 ,3 ]
Zhou, Shengqiang [1 ]
Skorupa, Wolfgang [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Vienna Univ Technol, Inst Solid State Elect, Floragasse 7, A-1040 Vienna, Austria
[3] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
来源
ADVANCED MATERIALS INTERFACES | 2018年 / 5卷 / 11期
关键词
flash lamp annealing; hyperdoping; intermediate band; ion implantation; nanowires;
D O I
10.1002/admi.201800101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and the conduction bands. Recently, bulk Si hyperdoped with chalcogens or transition metals is demonstrated to be an appropriate intermediate-band material for Si-based short-wavelength infrared photodetectors. Intermediate-band nanowires can potentially be used instead of bulk materials to overcome the Shockley-Queisser limit and to improve efficiency in solar cells, but fundamental scientific questions in hyperdoping Si nanowires require experimental verification. The development of a method for obtaining controlled hyperdoping levels at the nanoscale concomitant with the electrical activation of dopants is, therefore, vital to understanding these issues. Here, this paper shows a complementary metal-oxide-semiconductor (CMOS)-compatible technique based on nonequilibrium processing for the controlled doping of Si at the nanoscale with dopant concentrations several orders of magnitude greater than the equilibrium solid solubility. Through the nanoscale spatially controlled implantation of dopants, and a bottom-up template-assisted solid phase recrystallization of the nanowires with the use of millisecond-flash lamp annealing, Se-hyperdoped Si/SiO2 core/shell nanowires are formed that have a room-temperature sub-bandgap optoelectronic photoresponse when configured as a photoconductor device.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] CMOS-compatible Titanium Dioxide Deposition for Athermalization of Silicon Photonic Waveguides
    Shang, Kuanping
    Djordjevic, Stevan S.
    Li, Jun
    Liao, Ling
    Basak, Juthika
    Liu, Hai-Feng
    Yoo, S. J. B.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [32] CMOS-compatible optical rib waveguides defined by local oxidation of silicon
    Rowe, L. K.
    Elsey, M.
    Tarr, N. G.
    Knights, A. P.
    Post, E.
    [J]. ELECTRONICS LETTERS, 2007, 43 (07) : 392 - 393
  • [33] Spin-based quantum computing in silicon CMOS-compatible platforms
    Dzurak, A. S.
    [J]. 2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [34] Design and simulation of integrated inductors on porous silicon in CMOS-compatible processes
    Contopanagos, H.
    Nassiopoulou, A. G.
    [J]. SOLID-STATE ELECTRONICS, 2006, 50 (7-8) : 1283 - 1290
  • [35] CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide
    Djordjevic, Stevan S.
    Shang, Kuanping
    Guan, Binbin
    Cheung, Stanley T. S.
    Liao, Ling
    Basak, Juthika
    Liu, Hai-Feng
    Yoo, S. J. B.
    [J]. OPTICS EXPRESS, 2013, 21 (12): : 13958 - 13968
  • [36] Test structures for CMOS-compatible silicon pressure sensors reliability characterization
    Montané, E
    Bota, S
    Marco, S
    Carmona, M
    Samitier, J
    [J]. DESIGN, TEST, INTEGRATION, AND PACKAGING OF MEMS/MOEMS, PROCEEDINGS, 2000, 4019 : 250 - 256
  • [37] A CMOS-compatible process for fabricating electrical through-vias in silicon
    Andry, P. S.
    Tsang, C.
    Sprogis, E.
    Patel, C.
    Wright, S. L.
    Webb, B. C.
    Buchwalter, L. P.
    Manzer, D.
    Horton, R.
    Polastre, R.
    Knickerbocker, J.
    [J]. 56TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE 2006, VOL 1 AND 2, PROCEEDINGS, 2006, : 831 - +
  • [38] CMOS-compatible reconfigurable microring demultiplexer with doped silicon slab heater
    Xiong, Kang
    Xiao, Xi
    Li, Xianyao
    Hu, Yingtao
    Li, Zhiyong
    Chu, Tao
    Yu, Yude
    Yu, Jinzhong
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (21-22) : 4368 - 4371
  • [39] CMOS-Compatible PECVD Silicon Carbide Platform for Linear and Nonlinear Optics
    Xing, Peng
    Ma, Danhao
    Ooi, Kelvin J. A.
    Choi, Ju Won
    Agarwal, Anuradha Murthy
    Tan, Dawn
    [J]. ACS PHOTONICS, 2019, 6 (05) : 1162 - 1167
  • [40] CMOS-compatible amorphous silicon photonic layer integrated with VLSI electronics
    Rao, S.
    Della Corte, F. G.
    Coppola, G.
    Casalino, M.
    Gioffre, M. A.
    [J]. 2014 FOTONICA AEIT ITALIAN CONFERENCE ON PHOTONICS TECHNOLOGIES, 2014,