CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires

被引:13
|
作者
Berencen, Yonder [1 ]
Prucnal, Slawomir [1 ]
Moeller, Wolfhard [1 ]
Huebner, Rene [1 ]
Rebohle, Lars [1 ]
Boettger, Roman [1 ]
Glaser, Markus [2 ]
Schoenherr, Tommy [1 ]
Yuan, Ye [1 ]
Wang, Mao [1 ]
Georgiev, Yordan M. [1 ]
Erbe, Artur [1 ]
Lugstein, Alois [2 ]
Helm, Manfred [1 ,3 ]
Zhou, Shengqiang [1 ]
Skorupa, Wolfgang [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Vienna Univ Technol, Inst Solid State Elect, Floragasse 7, A-1040 Vienna, Austria
[3] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
来源
ADVANCED MATERIALS INTERFACES | 2018年 / 5卷 / 11期
关键词
flash lamp annealing; hyperdoping; intermediate band; ion implantation; nanowires;
D O I
10.1002/admi.201800101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hyperdoping consists of the intentional introduction of deep-level dopants into a semiconductor in excess of equilibrium concentrations. This causes a broadening of dopant energy levels into an intermediate band between the valence and the conduction bands. Recently, bulk Si hyperdoped with chalcogens or transition metals is demonstrated to be an appropriate intermediate-band material for Si-based short-wavelength infrared photodetectors. Intermediate-band nanowires can potentially be used instead of bulk materials to overcome the Shockley-Queisser limit and to improve efficiency in solar cells, but fundamental scientific questions in hyperdoping Si nanowires require experimental verification. The development of a method for obtaining controlled hyperdoping levels at the nanoscale concomitant with the electrical activation of dopants is, therefore, vital to understanding these issues. Here, this paper shows a complementary metal-oxide-semiconductor (CMOS)-compatible technique based on nonequilibrium processing for the controlled doping of Si at the nanoscale with dopant concentrations several orders of magnitude greater than the equilibrium solid solubility. Through the nanoscale spatially controlled implantation of dopants, and a bottom-up template-assisted solid phase recrystallization of the nanowires with the use of millisecond-flash lamp annealing, Se-hyperdoped Si/SiO2 core/shell nanowires are formed that have a room-temperature sub-bandgap optoelectronic photoresponse when configured as a photoconductor device.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate
    Zhang, Kaili
    Yang, Yang
    Pun, E. Y. B.
    Shen, Ruiqi
    [J]. NANOTECHNOLOGY, 2010, 21 (23)
  • [2] Auger recombination in luminescent, CMOS-compatible Si nanowires
    Guichard, Alex R.
    Kekatpure, Rohan D.
    Brongersma, Mark L.
    [J]. 2007 4TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2007, : 250 - 252
  • [3] CMOS-compatible athermal silicon microring resonators
    Guha, Biswajeet
    Kyotoku, Bernardo B. C.
    Lipson, Michal
    [J]. OPTICS EXPRESS, 2010, 18 (04): : 3487 - 3493
  • [4] Label-free immunodetection with CMOS-compatible semiconducting nanowires
    Eric Stern
    James F. Klemic
    David A. Routenberg
    Pauline N. Wyrembak
    Daniel B. Turner-Evans
    Andrew D. Hamilton
    David A. LaVan
    Tarek M. Fahmy
    Mark A. Reed
    [J]. Nature, 2007, 445 : 519 - 522
  • [5] Label-free immunodetection with CMOS-compatible semiconducting nanowires
    Stern, Eric
    Klemic, James F.
    Routenberg, David A.
    Wyrembak, Pauline N.
    Turner-Evans, Daniel B.
    Hamilton, Andrew D.
    LaVan, David A.
    Fahmy, Tarek M.
    Reed, Mark A.
    [J]. NATURE, 2007, 445 (7127) : 519 - 522
  • [6] Nonlinear silicon photonics on CMOS-compatible tellurium oxide
    Singh, Neetesh
    Mbonde, Hamidu M.
    Frankis, Henry C.
    Ippen, Erich
    Bradley, Jonathan D. B.
    Kaertner, Franz X.
    [J]. PHOTONICS RESEARCH, 2020, 8 (12) : 1904 - 1909
  • [7] Catalyst preparation for CMOS-compatible silicon nanowire synthesis
    Vincent T. Renard
    Michael Jublot
    Patrice Gergaud
    Peter Cherns
    Denis Rouchon
    Amal Chabli
    Vincent Jousseaume
    [J]. Nature Nanotechnology, 2009, 4 : 654 - 657
  • [8] Quantum Light from CMOS-Compatible Silicon Microresonators
    Mookherjea, Shayan
    [J]. 2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 408 - 409
  • [9] Nonlinear silicon photonics on CMOS-compatible tellurium oxide
    NEETESH SINGH
    HAMIDU M.MBONDE
    HENRY C.FRANKIS
    ERICH IPPEN
    JONATHAN D.B.BRADLEY
    FRANZ X.K?RTNER
    [J]. Photonics Research, 2020, 8 (12) : 1904 - 1909
  • [10] CMOS-Compatible Temperature Insensitive Silicon Microring Resonators
    Guha, Biswajeet
    Kyotoku, Bernardo B. C.
    Lipson, Michal
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,