State Estimation in Contact-Rich Manipulation

被引:0
|
作者
Wirnshofer, Florian [1 ]
Schmidt, Philipp S. [1 ]
Meister, Philine [1 ]
von Wichert, Georg [1 ]
Burgard, Wolfram [2 ]
机构
[1] Siemens Corp Technol, Otto Hahn Ring 6, Munich, Germany
[2] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
关键词
POSE;
D O I
10.1109/icra.2019.8793572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a Bayesian state estimator for contact-rich manipulation tasks with application in non-prehensile manipulation, industrial assembly or in-hand localization. The core idea of our approach is to explicitly model both the contact dynamics and a torque-based robot controller as part of the underlying system model. Our approach is capable of estimating the state of movable objects for various robot kinematics and geometries of robots and objects. This includes complex scenarios with multiple robots, multiple objects and articulated objects. We have validated our approach in simulation and on a physical robot. The experiments show that multi-modal distributions of six degrees of freedom object poses can be accurately tracked in real-time in a complex manipulation scenario.
引用
收藏
页码:3790 / 3796
页数:7
相关论文
共 50 条
  • [41] Policy Blending and Recombination for Multimodal Contact-Rich Tasks
    Narita, Tetsuya
    Kroemer, Oliver
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 2721 - 2728
  • [42] Variable-Impedance and Force Control for Robust Learning of Contact-rich Manipulation Tasks from User Demonstration
    Enayati, Nima
    Mariani, Stefano
    Wahrburg, Arne
    Zanchettin, Andrea M.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 9834 - 9840
  • [43] A Realistic Surgical Simulator for Non-Rigid and Contact-Rich Manipulation in Surgeries with the da Vinci Research Kit
    Ou, Yafei
    Zargarzadeh, Sadra
    Sedighi, Paniz
    Tavakoli, Mandi
    [J]. 2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 64 - 70
  • [44] Chance-Constrained Optimization in Contact-rich Systems
    Shirai, Yuki
    Jha, Devesh K.
    Raghunathan, Arvind U.
    Romeres, Diego
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 14 - 21
  • [45] Unified HumanRobotEnvironment Interaction Control in Contact-Rich Collaborative Manipulation Tasks via Model-Based Reinforcement Learning
    Liu, Xing
    Liu, Yu
    Liu, Zhengxiong
    Huang, Panfeng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (11) : 11474 - 11482
  • [46] PRECISION: Precomputing Environment Semantics for Contact-Rich Character Animation
    Kapadia, Mubbasir
    Xu Xianghao
    Nitti, Maurizio
    Kallmann, Marcelo
    Coros, Stelian
    Sumner, Robert W.
    Gross, Markus
    [J]. PROCEEDINGS I3D 2016: 20TH ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2016, : 29 - 37
  • [47] MyoSuite: A contact-rich simulation suite for musculoskeletal motor control
    Caggiano, Vittorio
    Wang, Huawei
    Durandau, Guillaume
    Sartori, Massimo
    Kumar, Vikash
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [48] Physically-Consistent Sensor Fusion in Contact-Rich Behaviors
    Lowrey, Kendall
    Kolev, Svetoslav
    Tassa, Yuval
    Erez, Tom
    Todorov, Emanuel
    [J]. 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 1656 - 1662
  • [49] Learning Contact-Rich Assembly Skills Using Residual Admittance Policy
    Spector, Oren
    Zacksenhouse, Miriam
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 6023 - 6030
  • [50] Learning Robust Skills for Tightly Coordinated Arms in Contact-Rich Tasks
    Fan, Yaowei
    Li, Xinge
    Zhang, Kaihang
    Qian, Chen
    Zhou, Fanghao
    Li, Tiefeng
    Huang, Zhilong
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03): : 2973 - 2980