Variable-Impedance and Force Control for Robust Learning of Contact-rich Manipulation Tasks from User Demonstration

被引:5
|
作者
Enayati, Nima [1 ]
Mariani, Stefano [2 ]
Wahrburg, Arne [1 ]
Zanchettin, Andrea M. [2 ]
机构
[1] ABB Corp Res, Ladenburg, Germany
[2] Politecn Milan, I-20133 Milan, Italy
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Teaching by demonstration; Impedance control; Co-Learning and self-learning; Motion Control Systems; Intelligent robotics;
D O I
10.1016/j.ifacol.2020.12.2687
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a Cartesian variable-impedance and force controller that enables manipulators to track position and force references demonstrated by a user through kinesthetic teaching. The proposed approach deploys the variability of user demonstrations to adapt the compliance profile of the manipulator to uncertainties and utilizes interaction force measurements during task reproduction to enhance force tracking performance. A passivity analysis is provided to demonstrate the stability of the system and a simulation exemplifies how passivity is achieved in the presence of variable impedance and force feedback. Furthermore, using a 7-DOF manipulator equipped with a force sensor, two experiments were conducted to highlight the ability of the proposed approach in successfully reproducing tasks with disturbances, where the state-of-the-art methods fall short. Copyright (C) 2020 The Authors.
引用
收藏
页码:9834 / 9840
页数:7
相关论文
共 34 条
  • [1] Variable Impedance Skill Learning for Contact-Rich Manipulation
    Yang, Quantao
    Durr, Alexander
    Topp, Elin Anna
    Stork, Johannes A.
    Stoyanov, Todor
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 8391 - 8398
  • [2] Learning Force Control for Contact-Rich Manipulation Tasks With Rigid Position-Controlled Robots
    Beltran-Hernandez, Cristian Camilo
    Petit, Damien
    Ramirez-Alpizar, Ixchel Georgina
    Nishi, Takayuki
    Kikuchi, Shinichi
    Matsubara, Takamitsu
    Harada, Kensuke
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 5709 - 5716
  • [3] Learning Force Control for Contact-Rich Manipulation Tasks with Rigid Position-Controlled Robots
    Beltran-Hernandez, Cristian Camilo
    Petit, Damien
    Ramirez-Alpizar, Ixchel Georgina
    Nishi, Takayuki
    Kikuchi, Shinichi
    Matsubara, Takamitsu
    Harada, Kensuke
    [J]. IEEE Robotics and Automation Letters, 2020, 5 (04): : 5709 - 5716
  • [4] Learning Dense Rewards for Contact-Rich Manipulation Tasks
    Wu, Zheng
    Lian, Wenzhao
    Unhelkar, Vaibhav
    Tomizuka, Masayoshi
    Schaal, Stefan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 6214 - 6221
  • [5] Residual Learning From Demonstration: Adapting DMPs for Contact-Rich Manipulation
    Davchev, Todor
    Luck, Kevin Sebastian
    Burke, Michael
    Meier, Franziska
    Schaal, Stefan
    Ramamoorthy, Subramanian
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 4488 - 4495
  • [6] RMPs for Safe Impedance Control in Contact-Rich Manipulation
    Shaw, Seiji
    Abbatematteo, Ben
    Konidaris, George
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2707 - 2713
  • [7] Combining Learning from Demonstration with Learning by Exploration to Facilitate Contact-Rich Tasks
    Shi, Yunlei
    Chen, Zhaopeng
    Wu, Yansong
    Henkel, Dimitri
    Riedel, Sebastian
    Liu, Hongxu
    Feng, Qian
    Zhang, Jianwei
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1062 - 1069
  • [8] A review on reinforcement learning for contact-rich robotic manipulation tasks
    Elguea-Aguinaco, Inigo
    Serrano-Munoz, Antonio
    Chrysostomou, Dimitrios
    Inziarte-Hidalgo, Ibai
    Bogh, Simon
    Arana-Arexolaleiba, Nestor
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 81
  • [9] Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty
    Ranjbar, Alireza
    Vien, Ngo Anh
    Ziesche, Hanna
    Boedecker, Joschka
    Neumann, Gerhard
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2383 - 2390
  • [10] Variable Impedance Control in End-Effector Space: An Action Space for Reinforcement Learning in Contact-Rich Tasks
    Martin-Martin, Roberto
    Lee, Michelle A.
    Gardner, Rachel
    Savarese, Silvio
    Bohg, Jeannette
    Garg, Animesh
    [J]. 2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 1010 - 1017