State Estimation in Contact-Rich Manipulation

被引:0
|
作者
Wirnshofer, Florian [1 ]
Schmidt, Philipp S. [1 ]
Meister, Philine [1 ]
von Wichert, Georg [1 ]
Burgard, Wolfram [2 ]
机构
[1] Siemens Corp Technol, Otto Hahn Ring 6, Munich, Germany
[2] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
关键词
POSE;
D O I
10.1109/icra.2019.8793572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a Bayesian state estimator for contact-rich manipulation tasks with application in non-prehensile manipulation, industrial assembly or in-hand localization. The core idea of our approach is to explicitly model both the contact dynamics and a torque-based robot controller as part of the underlying system model. Our approach is capable of estimating the state of movable objects for various robot kinematics and geometries of robots and objects. This includes complex scenarios with multiple robots, multiple objects and articulated objects. We have validated our approach in simulation and on a physical robot. The experiments show that multi-modal distributions of six degrees of freedom object poses can be accurately tracked in real-time in a complex manipulation scenario.
引用
收藏
页码:3790 / 3796
页数:7
相关论文
共 50 条
  • [31] Augmentation Enables One-Shot Generalization In Learning From Demonstration for Contact-Rich Manipulation
    Li, Xing
    Baum, Manuel
    Brock, Oliver
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 3656 - 3663
  • [32] Contact-Rich Manipulation of a Flexible Object based on Deep Predictive Learning using Vision and Tactility
    Ichiwara, Hideyuki
    Ito, Hiroshi
    Yamamoto, Kenjiro
    Mori, Hiroki
    Ogata, Tetsuya
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5375 - 5381
  • [33] Planning Approximate Exploration Trajectories for Model-Free Reinforcement Learning in Contact-Rich Manipulation
    Hoppe, Sabrina
    Lou, Zhongyu
    Hennes, Daniel
    Toussaint, Marc
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4042 - 4047
  • [34] An Open Tele-Impedance Framework to Generate Data for Contact-Rich Tasks in Robotic Manipulation
    Giammarino, Alberto
    Gandarias, Juan M.
    Ajoudani, Arash
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS, ARSO, 2023, : 140 - 146
  • [35] Covariance Steering for Uncertain Contact-rich Systems
    Shirai, Yuki
    Jha, Devesh K.
    Raghunathan, Arvind U.
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 7923 - 7929
  • [36] Contact-Rich SE(3)-Equivariant Robot Manipulation Task Learning via Geometric Impedance Control
    Seo, Joohwan
    Prakash, Nikhil P. S.
    Zhang, Xiang
    Wang, Changhao
    Choi, Jongeun
    Tomizuka, Masayoshi
    Horowitz, Roberto
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1508 - 1515
  • [37] Variable impedance control on contact-rich manipulation of a collaborative industrial mobile manipulator: An imitation learning approach
    Zhou, Zhengxue
    Yang, Xingyu
    Zhang, Xuping
    [J]. Robotics and Computer-Integrated Manufacturing, 2025, 92
  • [38] Efficient Sim-to-real Transfer of Contact-Rich Manipulation Skills with Online Admittance Residual Learning
    Zhang, Xiang
    Wang, Changhao
    Sun, Lingfeng
    Wu, Zheng
    Zhu, Xinghao
    Tomizuka, Masayoshi
    [J]. CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [39] Manifold Representations for State Estimation in Contact Manipulation
    Koval, Michael C.
    Pollard, Nancy S.
    Srinivasa, Siddhartha S.
    [J]. ROBOTICS RESEARCH, ISRR, 2016, 114 : 375 - 391
  • [40] Sampling-based Contact-rich Motion Control
    Liu, Libin
    Yin, KangKang
    van de Panne, Michiel
    Shao, Tianjia
    Xu, Weiwei
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (04):