Approximate Controllability of a Reaction-Diffusion System with a Cross-Diffusion Matrix and Fractional Derivatives on Bounded Domains

被引:3
|
作者
Badraoui, Salah [1 ]
机构
[1] Univ Guelma, Lab LAIG, Guelma 24000, Algeria
来源
关键词
Hilbert Space; Real Number; Positive Constant; Linear Operator; Bounded Domain;
D O I
10.1155/2010/281238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following reaction-diffusion system with a cross-diffusion matrix and fractional derivatives u(t) = a(1)Delta u + a(2)Delta v - c(1)(-Delta)(alpha 1)u - c(2)(-Delta)(alpha 2)v + 1(omega)f(1)(x, t) in Omega x ] 0, t* [, v(t) = b(1)Delta u + b(2)Delta v - d(1)(-Delta)(beta 1)u - d(2)(-Delta)(beta 2)v + 1(omega)f(2)(x, t) in Omega x ]0, t* [, u = v = 0 on partial derivative Omega x ]0, t*[, u (x, 0) = u(0) (x), v (x, 0) = v(0) (x) in x is an element of Omega, where Omega subset of R-N (N >= 1) is a smooth bounded domain, u(0), v(0) is an element of L-2 (Omega), the diffusion matrix M = [GRAPHICS] has semisimple and positive eigenvalues 0 < rho(1) <= rho(2), 0 < alpha(1), alpha(2), beta(1), beta(2) < 1, omega subset of Omega is an open nonempty set, and 1(omega) is the characteristic function of omega. Specifically, we prove that under some conditions over the coefficients a(i), b(i), c(i), d(i) (i = 1, 2), the semigroup generated by the linear operator of the system is exponentially stable, and under other conditions we prove that for all t* > 0 the system is approximately controllable on [0, t*].
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Pattern dynamics in a bimolecular reaction-diffusion model with saturation law and cross-diffusion
    Lian, Li-Na
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [32] An approximate solution of nonlinear fractional reaction-diffusion equation
    Das, S.
    Gupta, P. K.
    Ghosh, P.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 4071 - 4076
  • [33] On pattern formation in reaction-diffusion systems containing self- and cross-diffusion
    Aymard, Benjamin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
  • [34] Solutions of the Reaction-Diffusion Brusselator with Fractional Derivatives
    Anber, Ahmed
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2014, 17 (5-6) : 451 - 460
  • [35] Fractional Diffusion on Bounded Domains
    Ozlem Defterli
    Marta D’Elia
    Qiang Du
    Max Gunzburger
    Rich Lehoucq
    Mark M. Meerschaert
    Fractional Calculus and Applied Analysis, 2015, 18 : 342 - 360
  • [36] FRACTIONAL DIFFUSION ON BOUNDED DOMAINS
    Defterli, Ozlem
    D'Elia, Marta
    Du, Qiang
    Gunzburger, Max
    Lehoucq, Rich
    Meerschaert, Mark M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (02) : 342 - 360
  • [37] Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients
    Ruan, WH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (02) : 558 - 578
  • [38] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [39] Extremal equilibria for reaction-diffusion equations in bounded domains and applications
    Rodriguez-Bernal, Anibal
    Vidal-Lopez, Alejandro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) : 2983 - 3030
  • [40] Unique continuation for a reaction-diffusion system with cross diffusion
    Wu, Bin
    Gao, Ying
    Wang, Zewen
    Chen, Qun
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (04): : 511 - 525