Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4

被引:48
|
作者
El Khoury, Lea [1 ]
Santos-Martins, Diogo [2 ]
Sasmal, Sukanya [1 ]
Eberhardt, Jerome [2 ]
Bianco, Giulia [2 ]
Ambrosio, Francesca Alessandra [2 ,3 ]
Solis-Vasquez, Leonardo [4 ]
Koch, Andreas [4 ]
Forli, Stefano [2 ]
Mobley, David L. [1 ,5 ]
机构
[1] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[2] Scripps Res Inst, Dept Integrat Struct & Computat Biol, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
[3] Magna Graecia Univ Catanzaro, Dept Hlth Sci, Campus S Venuta, I-88100 Catanzaro, Italy
[4] Tech Univ Darmstadt, Embedded Syst & Applicat Grp, Darmstadt, Germany
[5] Univ Calif Irvine, Dept Chem, 147 Bison Modular, Irvine, CA 92697 USA
基金
美国国家卫生研究院;
关键词
Docking; MM-GBSA; AutoDock; Scoring functions; GENERALIZED BORN; FREE-ENERGIES; PROTEIN; BINDING; DOCKING; PERFORMANCE; MODEL; MM/GBSA; PBSA; PREDICTIONS;
D O I
10.1007/s10822-019-00240-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular docking has been successfully used in computer-aided molecular design projects for the identification of ligand poses within protein binding sites. However, relying on docking scores to rank different ligands with respect to their experimental affinities might not be sufficient. It is believed that the binding scores calculated using molecular mechanics combined with the Poisson-Boltzman surface area (MM-PBSA) or generalized Born surface area (MM-GBSA) can predict binding affinities more accurately. In this perspective, we decided to take part in Stage 2 of the Drug Design Data Resource (D3R) Grand Challenge 4 (GC4) to compare the performance of a quick scoring function, AutoDock4, to that of MM-GBSA in predicting the binding affinities of a set of beta-Amyloid Cleaving Enzyme 1 (BACE-1) ligands. Our results show that re-scoring docking poses using MM-GBSA did not improve the correlation with experimental affinities. We further did a retrospective analysis of the results and found that our MM-GBSA protocol is sensitive to details in the protein-ligand system: (i) neutral ligands are more adapted to MM-GBSA calculations than charged ligands, (ii) predicted binding affinities depend on the initial conformation of the BACE-1 receptor, (iii) protonating the aspartyl dyad of BACE-1 correctly results in more accurate binding affinity predictions.
引用
收藏
页码:1011 / 1020
页数:10
相关论文
共 35 条
  • [21] Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study
    Manon Réau
    Florent Langenfeld
    Jean-François Zagury
    Matthieu Montes
    Journal of Computer-Aided Molecular Design, 2018, 32 : 231 - 238
  • [22] Blinded prediction of protein-ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4
    Zou, Junjie
    Tian, Chuan
    Simmerling, Carlos
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1021 - 1029
  • [23] Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+
    Christina Schindler
    Friedrich Rippmann
    Daniel Kuhn
    Journal of Computer-Aided Molecular Design, 2018, 32 : 265 - 272
  • [24] Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method
    Hervé Hogues
    Traian Sulea
    Francis Gaudreault
    Christopher R. Corbeil
    Enrico O. Purisima
    Journal of Computer-Aided Molecular Design, 2018, 32 : 143 - 150
  • [25] Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method
    Hogues, Herve
    Sulea, Traian
    Gaudreault, Francis
    Corbeil, Christopher R.
    Purisima, Enrico O.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 143 - 150
  • [26] Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+
    Schindler, Christina
    Rippmann, Friedrich
    Kuhn, Daniel
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 265 - 272
  • [27] D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
    Conor D. Parks
    Zied Gaieb
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Johanna M. Jansen
    Georgia McGaughey
    Richard A. Lewis
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2020, 34 : 99 - 119
  • [28] D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    Parks, Conor D.
    Gaieb, Zied
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Jansen, Johanna M.
    McGaughey, Georgia
    Lewis, Richard A.
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 99 - 119
  • [29] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Eddy Elisée
    Vytautas Gapsys
    Nawel Mele
    Ludovic Chaput
    Edithe Selwa
    Bert L. de Groot
    Bogdan I. Iorga
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1031 - 1043
  • [30] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Elisee, Eddy
    Gapsys, Vytautas
    Mele, Nawel
    Chaput, Ludovic
    Selwa, Edithe
    de Groot, Bert L.
    Iorga, Bogdan I.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1031 - 1043