Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset

被引:0
|
作者
Eddy Elisée
Vytautas Gapsys
Nawel Mele
Ludovic Chaput
Edithe Selwa
Bert L. de Groot
Bogdan I. Iorga
机构
[1] Institut de Chimie des Substances Naturelles,
[2] CNRS UPR 2301,undefined
[3] Université Paris-Saclay,undefined
[4] Labex LERMIT,undefined
[5] Max Planck Institute for Biophysical Chemistry,undefined
[6] Sorbonne Université,undefined
[7] UPMC Paris 06,undefined
[8] Institut National de la Santé et de la Recherche Médicale,undefined
关键词
Molecular docking; Free energy calculations; Molecular dynamics; Pmx; D3R challenge; Beta secretase 1; Cathepsin S; Inhibitors;
D O I
暂无
中图分类号
学科分类号
摘要
Using the D3R Grand Challenge 4 dataset containing Beta-secretase 1 (BACE) and Cathepsin S (CatS) inhibitors, we have evaluated the performance of our in-house docking workflow that involves in the first step the selection of the most suitable docking software for the system of interest based on structural and functional information available in public databases, followed by the docking of the dataset to predict the binding modes and ranking of ligands. The macrocyclic nature of the BACE ligands brought additional challenges, which were dealt with by a careful preparation of the three-dimensional input structures for ligands. This provided top-performing predictions for BACE, in contrast with CatS, where the predictions in the absence of guiding constraints provided poor results. These results highlight the importance of previous structural knowledge that is needed for correct predictions on some challenging targets. After the end of the challenge, we also carried out free energy calculations (i.e. in a non-blinded manner) for CatS using the pmx software and several force fields (AMBER, Charmm). Using knowledge-based starting pose construction allowed reaching remarkable accuracy for the CatS free energy estimates. Interestingly, we show that the use of a consensus result, by averaging the results from different force fields, increases the prediction accuracy.
引用
收藏
页码:1031 / 1043
页数:12
相关论文
共 50 条
  • [1] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Elisee, Eddy
    Gapsys, Vytautas
    Mele, Nawel
    Chaput, Ludovic
    Selwa, Edithe
    de Groot, Bert L.
    Iorga, Bogdan I.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1031 - 1043
  • [2] Benchmarking ensemble docking methods in D3R Grand Challenge 4
    Jessie Low Gan
    Dhruv Kumar
    Cynthia Chen
    Bryn C. Taylor
    Benjamin R. Jagger
    Rommie E. Amaro
    Christopher T. Lee
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 87 - 99
  • [3] Benchmarking ensemble docking methods in D3R Grand Challenge 4
    Gan, Jessie Low
    Kumar, Dhruv
    Chen, Cynthia
    Taylor, Bryn C.
    Jagger, Benjamin R.
    Amaro, Rommie E.
    Lee, Christopher T.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (02) : 87 - 99
  • [4] Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
    Sergei Kotelnikov
    Andrey Alekseenko
    Cong Liu
    Mikhail Ignatov
    Dzmitry Padhorny
    Emiliano Brini
    Mark Lukin
    Evangelos Coutsias
    Ken A. Dill
    Dima Kozakov
    [J]. Journal of Computer-Aided Molecular Design, 2020, 34 : 179 - 189
  • [5] Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
    Kotelnikov, Sergei
    Alekseenko, Andrey
    Liu, Cong
    Ignatov, Mikhail
    Padhorny, Dzmitry
    Brini, Emiliano
    Lukin, Mark
    Coutsias, Evangelos
    Dill, Ken A.
    Kozakov, Dima
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 179 - 189
  • [6] Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
    Selwa, Edithe
    Martiny, Virginie Y.
    Iorga, Bogdan I.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 829 - 839
  • [7] Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets
    Edithe Selwa
    Virginie Y. Martiny
    Bogdan I. Iorga
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 829 - 839
  • [8] Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4
    Polo C.-H. Lam
    Ruben Abagyan
    Maxim Totrov
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1057 - 1069
  • [9] Docking-undocking combination applied to the D3R Grand Challenge 2015
    Ruiz-Carmona, Sergio
    Barril, Xavier
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 805 - 815
  • [10] Large scale free energy calculations for blind predictions of protein–ligand binding: the D3R Grand Challenge 2015
    Nanjie Deng
    William F. Flynn
    Junchao Xia
    R. S. K. Vijayan
    Baofeng Zhang
    Peng He
    Ahmet Mentes
    Emilio Gallicchio
    Ronald M. Levy
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 743 - 751