Steiner trees for hereditary graph classes: A treewidth perspective

被引:5
|
作者
Bodlaender, Hans L. [1 ]
Brettell, Nick [3 ]
Johnson, Matthew [2 ]
Paesani, Giacomo [2 ]
Paulusma, Daniel [2 ]
van Leeuwen, Erik Jan [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Durham, Dept Comp Sci, Durham, England
[3] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Steiner tree; Hereditary graph class; Treewidth; CLIQUE-WIDTH;
D O I
10.1016/j.tcs.2021.03.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the classical problems(Edge) Steiner TreeandVertex Steiner Treeafter restricting the input to some class of graphs characterized by a small set of forbidden induced subgraphs. We show a dichotomy for the former problem restricted to (H-1, H-2)free graphs and a dichotomy for the latter problem restricted to H-free graphs. We find that there exists an infinite family of graphs Hsuch thatVertex Steiner Treeis polynomial-time solvable for H-free graphs, whereas there exist only two graphs Hfor which this holds forEdge Steiner Tree(assuming P not equal NP). We also find thatEdge Steiner Treeis polynomial-time solvable for (H-1, H-2)-free graphs if and only if the treewidth of the class of (H-1, H-2)-free graphs is bounded (subject to P not equal NP). To obtain the latter result, we determine all pairs (H-1, H-2) for which the class of (H-1, H-2)-free graphs has bounded treewidth. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [41] Steiner minimal trees
    Rayward-Smith, VJ
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1998, 49 (12) : 1304 - 1305
  • [42] Packing Steiner trees
    DeVos, Matt
    McDonald, Jessica
    Pivotto, Irene
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 119 : 178 - 213
  • [43] Packing Steiner trees
    Jain, K
    Mahdian, M
    Salavatipour, MR
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 266 - 274
  • [44] STEINER MINIMAL TREES
    GILBERT, EN
    POLLAK, HO
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) : 1 - &
  • [45] On directed Steiner trees
    Zosin, L
    Khuller, S
    PROCEEDINGS OF THE THIRTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2002, : 59 - 63
  • [46] STEINER TREES FOR THE HYPERCUBE
    STEELMAN, JH
    AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (07): : 620 - 621
  • [47] Steiner trees and polyhedra
    Biha, MD
    Kerivin, H
    Mahjoub, AR
    DISCRETE APPLIED MATHEMATICS, 2001, 112 (1-3) : 101 - 120
  • [48] Multiquarks and Steiner trees
    Richard, Jean-Marc
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 207-08 : 371 - 374
  • [49] Floating Steiner trees
    Sarrafzadeh, M
    Lin, WL
    Wong, CK
    IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (02) : 197 - 211
  • [50] Connected Treewidth and connected graph searching
    Fraigniaud, P
    Nisse, N
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 479 - 490