Steiner trees for hereditary graph classes: A treewidth perspective

被引:5
|
作者
Bodlaender, Hans L. [1 ]
Brettell, Nick [3 ]
Johnson, Matthew [2 ]
Paesani, Giacomo [2 ]
Paulusma, Daniel [2 ]
van Leeuwen, Erik Jan [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Durham, Dept Comp Sci, Durham, England
[3] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Steiner tree; Hereditary graph class; Treewidth; CLIQUE-WIDTH;
D O I
10.1016/j.tcs.2021.03.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the classical problems(Edge) Steiner TreeandVertex Steiner Treeafter restricting the input to some class of graphs characterized by a small set of forbidden induced subgraphs. We show a dichotomy for the former problem restricted to (H-1, H-2)free graphs and a dichotomy for the latter problem restricted to H-free graphs. We find that there exists an infinite family of graphs Hsuch thatVertex Steiner Treeis polynomial-time solvable for H-free graphs, whereas there exist only two graphs Hfor which this holds forEdge Steiner Tree(assuming P not equal NP). We also find thatEdge Steiner Treeis polynomial-time solvable for (H-1, H-2)-free graphs if and only if the treewidth of the class of (H-1, H-2)-free graphs is bounded (subject to P not equal NP). To obtain the latter result, we determine all pairs (H-1, H-2) for which the class of (H-1, H-2)-free graphs has bounded treewidth. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [21] Treewidth of the Line Graph of a Complete Graph
    Harvey, Daniel J.
    Wood, David R.
    JOURNAL OF GRAPH THEORY, 2015, 79 (01) : 48 - 54
  • [22] Improved Steiner tree algorithms for bounded treewidth
    Chimani, Markus
    Mutzel, Petra
    Zey, Bernd
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 16 : 67 - 78
  • [23] Improved Steiner Tree Algorithms for Bounded Treewidth
    Chimani, Markus
    Mutzel, Petra
    Zey, Bernd
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 374 - +
  • [24] TREEWIDTH VERSUS CLIQUE NUMBER. I. GRAPH CLASSES WITH A FORBIDDEN STRUCTURE
    Dallard, Clement
    Milanic, Martin
    Storgel, Kenny
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2618 - 2646
  • [25] Stability of Hereditary Graph Classes Under Closure Operations
    Miller, Mirka
    Ryan, Joe
    Ryjacek, Zdenek
    Teska, Jakub
    Vrana, Petr
    JOURNAL OF GRAPH THEORY, 2013, 74 (01) : 67 - 80
  • [26] Complexity of the List Homomorphism Problem in Hereditary Graph Classes
    Okrasa, Karolina
    Rzazewski, Pawel
    38TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2021), 2021, 187
  • [27] Bounding the mim-width of hereditary graph classes
    Brettell, Nick
    Horsfield, Jake
    Munaro, Andrea
    Paesani, Giacomo
    Paulusma, Daniel
    JOURNAL OF GRAPH THEORY, 2022, 99 (01) : 117 - 151
  • [28] Treewidth distance on phylogenetic trees
    Kelk, Steven
    Stamoulis, Georgios
    Wu, Taoyang
    THEORETICAL COMPUTER SCIENCE, 2018, 731 : 99 - 117
  • [29] Integrality ratio for Group Steiner Trees and Directed Steiner Trees
    Halperin, E
    Kortsarz, G
    Krauthgamer, R
    Srinivasan, A
    Nan, W
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 275 - 284
  • [30] INTEGRALITY RATIO FOR GROUP STEINER TREES AND DIRECTED STEINER TREES
    Halperin, Eran
    Kortsarz, Guy
    Krauthgamer, Robert
    Srinivasan, Aravind
    Wang, Nan
    SIAM JOURNAL ON COMPUTING, 2007, 36 (05) : 1494 - 1511