Steiner trees for hereditary graph classes: A treewidth perspective

被引:5
|
作者
Bodlaender, Hans L. [1 ]
Brettell, Nick [3 ]
Johnson, Matthew [2 ]
Paesani, Giacomo [2 ]
Paulusma, Daniel [2 ]
van Leeuwen, Erik Jan [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Durham, Dept Comp Sci, Durham, England
[3] Victoria Univ Wellington, Sch Math & Stat, Wellington, New Zealand
关键词
Steiner tree; Hereditary graph class; Treewidth; CLIQUE-WIDTH;
D O I
10.1016/j.tcs.2021.03.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the classical problems(Edge) Steiner TreeandVertex Steiner Treeafter restricting the input to some class of graphs characterized by a small set of forbidden induced subgraphs. We show a dichotomy for the former problem restricted to (H-1, H-2)free graphs and a dichotomy for the latter problem restricted to H-free graphs. We find that there exists an infinite family of graphs Hsuch thatVertex Steiner Treeis polynomial-time solvable for H-free graphs, whereas there exist only two graphs Hfor which this holds forEdge Steiner Tree(assuming P not equal NP). We also find thatEdge Steiner Treeis polynomial-time solvable for (H-1, H-2)-free graphs if and only if the treewidth of the class of (H-1, H-2)-free graphs is bounded (subject to P not equal NP). To obtain the latter result, we determine all pairs (H-1, H-2) for which the class of (H-1, H-2)-free graphs has bounded treewidth. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [31] THE TREEWIDTH AND PATHWIDTH OF GRAPH UNIONS
    Alecu, Bogdan
    V. Lozin, Vadim
    Quiroz, Daniel a.
    Rabinovich, Roman
    Razgon, Igor
    Zamaraev, Viktor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (01) : 261 - 276
  • [32] A POLYNOMIAL ALGORITHM FOR TESTING WHETHER A GRAPH IS 3-STEINER DISTANCE HEREDITARY
    OELLERMANN, O
    SPINRAD, JP
    INFORMATION PROCESSING LETTERS, 1995, 55 (03) : 149 - 154
  • [33] Page Number and Graph Treewidth
    Li Xianglu
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2010, 1 (03) : 53 - 58
  • [34] Computational aspects of graph treewidth
    Bykova, V. V.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2011, 13 (03): : 65 - 79
  • [35] Independent-set reconfiguration thresholds of hereditary graph classes
    de Berg, Mark
    Jansen, Bart M. P.
    Mukherjee, Debankur
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 165 - 182
  • [36] Graph classes between parity and distance-hereditary graphs
    Cicerone, S
    Di Stefano, G
    DISCRETE APPLIED MATHEMATICS, 1999, 95 (1-3) : 197 - 216
  • [37] The world of hereditary graph classes viewed through Truemper configurations
    Vuskovic, Kristina
    SURVEYS IN COMBINATORICS 2013, 2013, 409 : 265 - 325
  • [38] ON THE STEINER RADIUS AND STEINER DIAMETER OF A GRAPH
    HENNING, MA
    OELLERMANN, OR
    SWART, HC
    ARS COMBINATORIA, 1990, 29C : 13 - 19
  • [39] RECTILINEAR STEINER TREES IN RECTANGLE TREES
    FARLEY, AM
    HEDETNIEMI, ST
    MITCHELL, SL
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01): : 70 - 81
  • [40] Reoptimization of Steiner Trees
    Bilo, Davide
    Boeckenhauer, Hans-Joachim
    Hromkovic, Juraj
    Kralovic, Richard
    Moemke, Tobias
    Widmayer, Peter
    Zych, Anna
    ALGORITHM THEORY - SWAT 2008, 2008, 5124 : 258 - 269