Multidimensional fractional Fourier transform and generalized fractional convolution

被引:24
|
作者
Kamalakkannan, R. [1 ]
Roopkumar, R. [1 ]
机构
[1] Cent Univ Tamil Nadu, Dept Math, Thiruvarur, India
关键词
Fractional Fourier transform; convolution; inversion theorem; BAND-LIMITED SIGNALS; PRODUCT; ORDER;
D O I
10.1080/10652469.2019.1684486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove inversion theorems and Parseval identity for the multidimensional fractional Fourier transform. Analogous to the existing fractional convolutions on functions of single variable, we also introduce a generalized fractional convolution on functions of several variables and we derive their properties including convolution theorem and product theorem for the multidimensional fractional Fourier transform.
引用
收藏
页码:152 / 165
页数:14
相关论文
共 50 条
  • [41] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    [J]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716
  • [42] The fractional Fourier transform: A tutorial
    Mendlovic, D
    [J]. PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 476 - 480
  • [43] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [44] From complex fractional Fourier transform to complex fractional radon transform
    Fan, HY
    Jiang, NQ
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (01) : 23 - 26
  • [45] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Singh, Abhishek
    Banerji, P. K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 49 - 53
  • [46] Convolution theorem involving n-dimensional windowed fractional Fourier transform
    Wenbiao GAO
    Bingzhao LI
    [J]. Science China(Information Sciences), 2021, 64 (06) : 244 - 246
  • [47] Relationship Between Fractional Calculus and Fractional Fourier Transform
    Zhang, Yanshan
    Zhang, Feng
    Lu, Mingfeng
    [J]. SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2015, 2015, 9596
  • [48] Fractional Fourier transform in optics
    Mendlovic, D
    Ozaktas, HM
    [J]. 18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 40 - 41
  • [49] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Abhishek Singh
    P. K. Banerji
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 49 - 53
  • [50] A convolution-based fractional transform
    Dou, Jiayin
    He, Qi
    Peng, Yu
    Sun, Qiongge
    Liu, Shutian
    Liu, Zhengjun
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (08)