Multidimensional fractional Fourier transform and generalized fractional convolution

被引:24
|
作者
Kamalakkannan, R. [1 ]
Roopkumar, R. [1 ]
机构
[1] Cent Univ Tamil Nadu, Dept Math, Thiruvarur, India
关键词
Fractional Fourier transform; convolution; inversion theorem; BAND-LIMITED SIGNALS; PRODUCT; ORDER;
D O I
10.1080/10652469.2019.1684486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove inversion theorems and Parseval identity for the multidimensional fractional Fourier transform. Analogous to the existing fractional convolutions on functions of single variable, we also introduce a generalized fractional convolution on functions of several variables and we derive their properties including convolution theorem and product theorem for the multidimensional fractional Fourier transform.
引用
收藏
页码:152 / 165
页数:14
相关论文
共 50 条
  • [31] The discrete fractional Fourier transform
    Candan, Ç
    Kutay, MA
    Ozaktas, HM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) : 1329 - 1337
  • [32] Computation of the fractional Fourier transform
    Bultheel, A
    Martinez Sulbaran HE
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) : 182 - 202
  • [33] The Fractional Fourier Transform on Graphs
    Wang, Yi-qian
    Li, Bing-zhao
    Cheng, Qi-yuan
    [J]. 2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 105 - 110
  • [34] Random fractional Fourier transform
    Liu, Zhengjun
    Liu, Shutian
    [J]. OPTICS LETTERS, 2007, 32 (15) : 2088 - 2090
  • [35] The discrete fractional Fourier transform
    Candan, C
    Kutay, MA
    Ozaktas, HM
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1713 - 1716
  • [36] Fractional Fourier Transform Reflectometry
    Shiloh, Lihi
    Eyal, Avishay
    [J]. 23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [37] Fractional Fourier Transform: A Survey
    Krishna, B. T.
    [J]. PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI'12), 2012, : 751 - 757
  • [38] From Complex Fractional Fourier Transform to Complex Fractional Radon Transform
    FAN Hong-Yi JIANG Nian-Quan Department of Material Science and Engineering
    [J]. Communications in Theoretical Physics, 2004, 42 (07) : 23 - 26
  • [39] The fractional Fourier transform: A tutorial
    Mendlovic, D
    [J]. PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 476 - 480
  • [40] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    [J]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716