Multidimensional fractional Fourier transform and generalized fractional convolution

被引:24
|
作者
Kamalakkannan, R. [1 ]
Roopkumar, R. [1 ]
机构
[1] Cent Univ Tamil Nadu, Dept Math, Thiruvarur, India
关键词
Fractional Fourier transform; convolution; inversion theorem; BAND-LIMITED SIGNALS; PRODUCT; ORDER;
D O I
10.1080/10652469.2019.1684486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove inversion theorems and Parseval identity for the multidimensional fractional Fourier transform. Analogous to the existing fractional convolutions on functions of single variable, we also introduce a generalized fractional convolution on functions of several variables and we derive their properties including convolution theorem and product theorem for the multidimensional fractional Fourier transform.
引用
收藏
页码:152 / 165
页数:14
相关论文
共 50 条
  • [21] 2-D affine generalized fractional Fourier transform
    Ding, JJ
    Pei, SC
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3181 - 3184
  • [22] 2-D affine generalized fractional Fourier transform
    Ding, Jian-Jiun
    Pei, Soo-Chang
    [J]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 6 : 3181 - 3184
  • [23] Generalized joint fractional Fourier transform correlators: a compact approach
    Kuo, CJ
    Luo, Y
    [J]. APPLIED OPTICS, 1998, 37 (35): : 8270 - 8276
  • [24] Solving Generalized Heat and Generalized Laplace Equations Using Fractional Fourier Transform
    Sulasteri, Sri
    Bahri, Mawardi
    Bachtiar, Nasrullah
    Kusuma, Jeffry
    Ribal, Agustinus
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [25] On fractional Fourier transform moments
    Alieva, T
    Bastiaans, MJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 320 - 323
  • [26] Fractional finite Fourier transform
    Khare, K
    George, N
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (07) : 1179 - 1185
  • [27] Discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    [J]. ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 536 - 539
  • [28] Deep Fractional Fourier Transform
    Yu, Hu
    Huang, Jie
    Li, Lingzhi
    Zhou, Man
    Zhao, Feng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] Trainable Fractional Fourier Transform
    Koc, Emirhan
    Alikasifoglu, Tuna
    Aras, Arda Can
    Koc, Aykut
    [J]. IEEE Signal Processing Letters, 2024, 31 : 751 - 755
  • [30] Trainable Fractional Fourier Transform
    Koc, Emirhan
    Alikasifoglu, Tuna
    Aras, Arda Can
    Koc, Aykut
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 751 - 755