RICCI SOLITONS ON 3-DIMENSIONAL COSYMPLECTIC MANIFOLDS

被引:48
|
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
美国国家科学基金会;
关键词
Ricci soliton; 3-dimensional cosymplectic manifold; contact transformation; locally flat; CONTACT GEOMETRY; INTEGRABILITY; TENSOR;
D O I
10.1515/ms-2017-0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if a 3-dimensional cosymplectic manifold M-3 admits a Ricci soliton, then either M-3 is locally flat or the potential vector field is an infinitesimal contact transformation.
引用
收藏
页码:979 / 984
页数:6
相关论文
共 50 条
  • [31] Ricci collineations on 3-dimensional paracontact metric manifolds
    Küpeli Erken I.
    Murathan C.
    Afrika Matematika, 2018, 29 (3-4) : 665 - 675
  • [32] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (01): : 89 - 98
  • [33] ∗-CONFORMAL RICCI SOLITON ON α-COSYMPLECTIC MANIFOLDS
    Majhi, Pradip
    Das, Raju
    Woo, Changhwa
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2025, 43 (01): : 223 - 232
  • [34] *-CONFORMAL η-RICCI SOLITION ON α-COSYMPLECTIC MANIFOLDS
    Haseeb, Abdul
    Prakasha, D. G.
    Harish, H.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (02): : 165 - 179
  • [35] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (01): : 89 - 98
  • [36] Geometry of 3-dimensional gradient Ricci solitons with positive curvature
    Chu, SC
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2005, 13 (01) : 129 - 150
  • [37] Remarks on Almost Cosymplectic 3-Manifolds with RICCI Operators
    Pan, Quanxiang
    Wang, Yajie
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [38] 3-Dimensional f-Kenmotsu manifolds and solitons
    Sardar, Arpan
    De Chand, Uday
    Najafi, Behzad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (13)
  • [39] Ricci curvature properties and stability on 3-dimensional Kenmotsu manifolds
    Voicu, R. C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 273 - 278
  • [40] Ricci curvature and Weitzenbock formula on 3-dimensional Sasakian manifolds
    Voicu, Rodica
    BSG PROCEEDINGS 16, 2009, 16 : 163 - 173