RICCI SOLITONS ON 3-DIMENSIONAL COSYMPLECTIC MANIFOLDS

被引:48
|
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
美国国家科学基金会;
关键词
Ricci soliton; 3-dimensional cosymplectic manifold; contact transformation; locally flat; CONTACT GEOMETRY; INTEGRABILITY; TENSOR;
D O I
10.1515/ms-2017-0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if a 3-dimensional cosymplectic manifold M-3 admits a Ricci soliton, then either M-3 is locally flat or the potential vector field is an infinitesimal contact transformation.
引用
收藏
页码:979 / 984
页数:6
相关论文
共 50 条
  • [41] Almost Cosymplectic (k, μ)-metrics as η-Ricci Solitons
    Wang, Wenjie
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (01) : 58 - 72
  • [42] Certain solitons on a-cosymplectic manifolds
    Sardar, A.
    Sarkar, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 539 - 547
  • [43] Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds
    Turana, Mine
    De, Uday Chand
    Yildiz, Ahmet
    FILOMAT, 2012, 26 (02) : 363 - 370
  • [44] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [45] Three-Dimensional Riemannian Manifolds and Ricci Solitons
    Chaubey, Sudhakar K.
    De, Uday Chand
    QUAESTIONES MATHEMATICAE, 2022, 45 (05) : 765 - 778
  • [46] RIEMANN SOLITONS ON (κ, μ)-ALMOST COSYMPLECTIC MANIFOLDS
    Gowda, Prakasha D.
    Naik, Devaraja M.
    Ravindranatha, Amruthalakshmi M.
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 881 - 892
  • [47] CONFORMAL RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLD
    Roy, Soumendu
    Bhattacharyya, Arindam
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (01): : 89 - 109
  • [48] RICCI SOLITONS ON COMPACT 3-MANIFOLDS
    IVEY, T
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) : 301 - 307
  • [49] *-Ricci solitons on Sasakian 3-manifolds
    Majhi, Pradip
    De, Uday Chand
    Suh, Young Jin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 93 (1-2): : 241 - 252
  • [50] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458