∗-CONFORMAL RICCI SOLITON ON α-COSYMPLECTIC MANIFOLDS

被引:0
|
作者
Majhi, Pradip [1 ]
Das, Raju [1 ]
Woo, Changhwa [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, Kolkata, India
[2] Pukyong Natl Univ, Coll Nat Sci, Dept Biomed Engn, Busan 48513, South Korea
来源
关键词
alpha-cosymplectic manifold; cosymplectic mani- fold; *-Ricci tensor; *-conformal Ricci soliton; eta-Einstein manifold; Einstein manifold;
D O I
10.14317/jami.2025.223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider alpha-cosymplectic manifold admitting *conformal Ricci soliton. We prove that if a alpha-cosymplectic manifold admitting*conformal Ricci soliton is Ricci pseudo-symmetric then it becomes a cosymplectic manifold. We also prove that if a alpha-cosymplectic manifold admitting*conformal Ricci soliton satisfies S.C = 0 then it reduces to a cosymplectic manifold. Moreover it is proven that if a alpha-cosymplectic manifold admitting*conformal Ricci soliton satisfies R(xi, W).C = 0, then the manifold is Einstein.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [1] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (01): : 89 - 98
  • [2] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (01): : 89 - 98
  • [3] *-CONFORMAL η-RICCI SOLITION ON α-COSYMPLECTIC MANIFOLDS
    Haseeb, Abdul
    Prakasha, D. G.
    Harish, H.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (02): : 165 - 179
  • [4] Certain Results of Conformal and *-Conformal Ricci Soliton on Para-Cosymplectic and Para-Kenmotsu Manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Chen, Xiaomin
    FILOMAT, 2021, 35 (15) : 5001 - 5015
  • [5] A NOTE ON *-CONFORMAL AND GRADIENT *-CONFORMAL η-RICCI SOLITONS IN α-COSYMPLECTIC MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    Chaubey, Sudhakar K.
    Vanli, Aysel Turgut
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (02): : 231 - 243
  • [6] Ricci Soliton on (κ < 0, μ)-almost Cosymplectic Manifolds
    Rani, Savita
    Gupta, Ram Shankar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (02): : 333 - 345
  • [7] Ricci curvature of submanifolds in locally conformal almost cosymplectic manifolds
    Kim, JS
    Tripathi, MM
    Choi, JD
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (03): : 259 - 271
  • [8] SOME CHARACTERIZATIONS OF α-COSYMPLECTIC MANIFOLDS ADMITTING *-CONFORMAL RICCI SOLITIONS
    Das, Subrata Kumar
    Sarkar, Avijit
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (02): : 409 - 416
  • [9] *-Ricci Tensor on α-Cosymplectic Manifolds
    Amruthalakshmi, M. R.
    Prakasha, D. G.
    Bin Turki, Nasser
    Unal, Inan
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [10] *-Conformal η-Ricci soliton within the framework of Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    RICERCHE DI MATEMATICA, 2023,