The operator method for solving the fractional Fokker-Planck equation

被引:3
|
作者
Elwakil, SA [1 ]
Zahran, MA [1 ]
Abdou, MA [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Theoret Res Grp, Mansoura, Egypt
关键词
fractional Fokker-Planck equation; operator method; anomalous transport;
D O I
10.1016/S0022-4073(02)00164-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The operator method has been used to solve the fractional Fokker-Planck equation (FPE) which recently formulated as a model for the anomalous transport process. Two classes of special interest of fractional F-P equations coming from plasma physics and charged particle transport problem has been considered. It is shown that the mean square-displacement [x(2)(t)] satisfy the universal power law characterized the anomalous time evolution i.e. [x(2)(t)](t) over tilde (gamma), 0 < gamma < 1. (C) 2003 Published by Elsevier Science Ltd.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 50 条
  • [41] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [42] Bayesian filtering based on solving the Fokker-Planck equation
    Wang, Xiaogang
    Qin, Wutao
    Wang, Yu
    Cui, Naigang
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (02): : 312 - 319
  • [43] A FOKKER-PLANCK EQUATION OF FRACTIONAL ORDER WITH RESPECT TO TIME
    JUMARIE, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) : 3536 - 3542
  • [44] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [45] FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL CONFINEMENT FORCE
    Lafleche, Laurent
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 164 - 196
  • [46] An efficient computational technique for solving the Fokker-Planck equation with space and time fractional derivatives
    Saravanan, A.
    Magesh, N.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (02) : 160 - 166
  • [47] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    [J]. PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [48] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [49] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [50] A New Numerical Method for Solving Nonlinear Fractional Fokker-Planck Differential Equations
    Guo, BeiBei
    Jiang, Wei
    Zhang, ChiPing
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):