Levy anomalous diffusion and fractional Fokker-Planck equation

被引:119
|
作者
Yanovsky, VV
Chechkin, AV
Schertzer, D
Tur, AV
机构
[1] Univ Paris 06, Modelisat Mecan Lab, F-75252 Paris 05, France
[2] Natl Acad Sci Ukraine, Inst Single Crystals, UA-310001 Kharkov, Ukraine
[3] Observ Midi Pyrenees, F-31400 Toulouse, France
来源
PHYSICA A | 2000年 / 282卷 / 1-2期
关键词
diffusion; transport; statistical physics; stochastic systems; scaling; renormalization;
D O I
10.1016/S0378-4371(99)00565-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the Fokker-Planck equation can be generalized into a 'fractional Fokker-Planck' equation, i.e., an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable sourer to the classical Gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non-trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments, The (mono-) scaling behaviors of the fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the fractional Fokker-Planck equation in physics, (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:13 / 34
页数:22
相关论文
共 50 条
  • [1] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [2] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [3] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [4] Anomalous diffusion: Fractional Fokker-Planck equation and its solutions
    Lenzi, EK
    Mendes, RS
    Fa, KS
    Malacarne, LC
    da Silva, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2179 - 2185
  • [5] Anomalous behaviors in fractional Fokker-Planck equation
    Kim, K
    Kong, YS
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) : 979 - 982
  • [6] A fractional Fokker-Planck model for anomalous diffusion
    Anderson, Johan
    Kim, Eun-jin
    Moradi, Sara
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [7] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [8] Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation
    da Silva, PC
    da Silva, LR
    Lenzi, EK
    Mendes, RS
    Malacarne, LC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 16 - 21
  • [9] Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion
    Abe, S
    PHYSICAL REVIEW E, 2004, 69 (01): : 4
  • [10] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798