Levy anomalous diffusion and fractional Fokker-Planck equation

被引:119
|
作者
Yanovsky, VV
Chechkin, AV
Schertzer, D
Tur, AV
机构
[1] Univ Paris 06, Modelisat Mecan Lab, F-75252 Paris 05, France
[2] Natl Acad Sci Ukraine, Inst Single Crystals, UA-310001 Kharkov, Ukraine
[3] Observ Midi Pyrenees, F-31400 Toulouse, France
来源
PHYSICA A | 2000年 / 282卷 / 1-2期
关键词
diffusion; transport; statistical physics; stochastic systems; scaling; renormalization;
D O I
10.1016/S0378-4371(99)00565-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the Fokker-Planck equation can be generalized into a 'fractional Fokker-Planck' equation, i.e., an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable sourer to the classical Gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non-trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments, The (mono-) scaling behaviors of the fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the fractional Fokker-Planck equation in physics, (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:13 / 34
页数:22
相关论文
共 50 条
  • [31] Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [32] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Lv, Longjin
    Qiu, Weiyuan
    Ren, Fuyao
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 619 - 628
  • [33] Fractional driftless Fokker-Planck equation with power law diffusion coefficients
    Südland, N
    Baumann, G
    Nonnenmacher, TF
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2001, : 513 - 528
  • [34] Fokker-Planck equation driven by asymmetric Levy motion
    Wang, Xiao
    Shang, Wenpeng
    Li, Xiaofan
    Duan, Jinqiao
    Huang, Yanghong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 787 - 811
  • [35] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Longjin Lv
    Weiyuan Qiu
    Fuyao Ren
    Journal of Statistical Physics, 2012, 149 : 619 - 628
  • [36] Fractional Fokker-Planck equation for fractal media
    Tarasov, VE
    CHAOS, 2005, 15 (02)
  • [37] Fokker-Planck equation of the fractional Brownian motion
    Di Paola, M.
    Pirrotta, A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 147
  • [38] Fokker-Planck equation with fractional coordinate derivatives
    Tarasov, Vasily E.
    Zaslavsky, George M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (26) : 6505 - 6512
  • [39] FRACTIONAL FOKKER-PLANCK EQUATION IN A FRACTAL MEDIUM
    Deng, Shuxian
    Ge, Xinxin
    THERMAL SCIENCE, 2020, 24 (04): : 2589 - 2595
  • [40] Stochastic stability of fractional Fokker-Planck equation
    Zhang, Yutian
    Chen, Feng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 : 35 - 42