Fokker-Planck equation with fractional coordinate derivatives

被引:10
|
作者
Tarasov, Vasily E. [1 ,2 ]
Zaslavsky, George M. [1 ,3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[3] NYU, Dept Phys, New York, NY 10003 USA
关键词
Fractional kinetics; Fractional derivatives; Long-range interaction; Fokker-Planck equation; Kolmogorov-Feller equation;
D O I
10.1016/j.physa.2008.08.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations, with averaging with respect to a fast variable, is used. The main assumption is that the correlation function of probability densities of particles to make a step has a power-law dependence. As a result, we obtain a Fokker-Planck equation with fractional coordinate derivative of order 1 < alpha < 2. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6505 / 6512
页数:8
相关论文
共 50 条
  • [1] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [2] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [3] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    [J]. MATHEMATICS, 2017, 5 (01):
  • [4] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [5] Fokker-Planck equation for fractional systems
    Tarasov, Vasily E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (06): : 955 - 967
  • [6] Fractional representation of Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1929 - 1935
  • [7] Local fractional Fokker-Planck equation
    Kolwankar, KM
    Gangal, AD
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 214 - 217
  • [8] Parameters of the fractional Fokker-Planck equation
    Denisov, S. I.
    Haenggi, P.
    Kantz, H.
    [J]. EPL, 2009, 85 (04)
  • [9] Fractional Fokker-Planck equation for fractal media
    Tarasov, VE
    [J]. CHAOS, 2005, 15 (02)
  • [10] Stochastic stability of fractional Fokker-Planck equation
    Zhang, Yutian
    Chen, Feng
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 : 35 - 42