Fractional representation of Fokker-Planck equation

被引:23
|
作者
El-Wakil, SA [1 ]
Zahran, MA [1 ]
机构
[1] Univ Mansoura, Fac Sci, Theoret Phys Grp, Dept Phys, Mansoura, Egypt
关键词
D O I
10.1016/S0960-0779(00)00149-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the definition of the characteristic function and Kramers-Moyal forward expansion, one can obtain the fractional Fokker-Planck equation (FFPE) in the domain of fractal time evolution with a critical exponent beta (0 < beta less than or equal to 1) [El-Wakil SA, Zahran MA. Chaos, Solitons g( Fractals 11 (2000) 791-98]. The solutions of Fokker-Planck equation will establish in three different cases of mean-square displacement as follows: (i) ((x(t + tau) - x(t)(2)) similar to tau, (ii) ((x(t + tau) - x(t))(2)) tau (beta), 0 < beta less than or equal to 1, (iii) ((x(t + tau) - x(t))2) similar to x-0 tau beta, theta = d(w) -2 The distribution function of each case can be obtained in a closed form of Fox-function. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1929 / 1935
页数:7
相关论文
共 50 条
  • [1] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [2] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    [J]. MATHEMATICS, 2017, 5 (01):
  • [3] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [4] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [5] Fokker-Planck equation for fractional systems
    Tarasov, Vasily E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (06): : 955 - 967
  • [6] Local fractional Fokker-Planck equation
    Kolwankar, KM
    Gangal, AD
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 214 - 217
  • [7] Parameters of the fractional Fokker-Planck equation
    Denisov, S. I.
    Haenggi, P.
    Kantz, H.
    [J]. EPL, 2009, 85 (04)
  • [8] Fractional Fokker-Planck equation for fractal media
    Tarasov, VE
    [J]. CHAOS, 2005, 15 (02)
  • [9] Stochastic stability of fractional Fokker-Planck equation
    Zhang, Yutian
    Chen, Feng
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 : 35 - 42
  • [10] Fokker-Planck equation of the fractional Brownian motion
    Di Paola, M.
    Pirrotta, A.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 147