Fractional representation of Fokker-Planck equation

被引:23
|
作者
El-Wakil, SA [1 ]
Zahran, MA [1 ]
机构
[1] Univ Mansoura, Fac Sci, Theoret Phys Grp, Dept Phys, Mansoura, Egypt
关键词
D O I
10.1016/S0960-0779(00)00149-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the definition of the characteristic function and Kramers-Moyal forward expansion, one can obtain the fractional Fokker-Planck equation (FFPE) in the domain of fractal time evolution with a critical exponent beta (0 < beta less than or equal to 1) [El-Wakil SA, Zahran MA. Chaos, Solitons g( Fractals 11 (2000) 791-98]. The solutions of Fokker-Planck equation will establish in three different cases of mean-square displacement as follows: (i) ((x(t + tau) - x(t)(2)) similar to tau, (ii) ((x(t + tau) - x(t))(2)) tau (beta), 0 < beta less than or equal to 1, (iii) ((x(t + tau) - x(t))2) similar to x-0 tau beta, theta = d(w) -2 The distribution function of each case can be obtained in a closed form of Fox-function. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1929 / 1935
页数:7
相关论文
共 50 条
  • [21] FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL CONFINEMENT FORCE
    Lafleche, Laurent
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 164 - 196
  • [22] A FOKKER-PLANCK EQUATION OF FRACTIONAL ORDER WITH RESPECT TO TIME
    JUMARIE, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) : 3536 - 3542
  • [23] The operator method for solving the fractional Fokker-Planck equation
    Elwakil, SA
    Zahran, MA
    Abdou, MA
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 77 (03): : 317 - 327
  • [24] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [25] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [26] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    [J]. PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [27] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [28] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219
  • [29] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522
  • [30] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273