Fractional (space-time) Fokker-Planck equation

被引:24
|
作者
El-Wakil, SA [1 ]
Elhanbaly, A [1 ]
Zahran, MA [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Theoret Res Grp, Mansoura, Egypt
关键词
D O I
10.1016/S0960-0779(99)00203-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using Kramers-Moyal forward expansion and the definition of characteristic function (CF) with some consideration related to derivatives of fractional order, one can obtain the fractional space-time Fokker-Planck equation (FFPE) partial derivative (beta)p(x, t)/partial derivativet(beta) = (-i)(7) D(x)(7)sigma (x, t)p(x, t), 0 < <beta> less than or equal to 1, 0 < <gamma> less than or equal to 2. The obtained equation could he related to a dynamical system subject to fractional Brownian motion. Therefore, the solution of FFPE will be established on three different cases that correspond to different physical situations related to the mean-square displacement, [(x(t + tau) - x(t))(2)] similar to sigma (x, t)tau (beta). (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1035 / 1040
页数:6
相关论文
共 50 条
  • [1] A numerical algorithm for the space and time fractional Fokker-Planck equation
    Vanani, S. Karimi
    Aminataei, A.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (08) : 1037 - 1052
  • [2] New approximations of space-time fractional Fokker-Planck equations
    Singh, Brajesh Kumar
    Kumar, Anil
    Gupta, Mukesh
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (03): : 495 - 521
  • [3] A space-time Galerkin Müntz spectral method for the time fractional Fokker-Planck equation
    Zeng, Wei
    He, Jiawei
    Xiao, Aiguo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (04) : 407 - 431
  • [4] A NOVEL HIGH ORDER SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL FOKKER-PLANCK EQUATION
    Zheng, Minling
    Liu, Fawang
    Turner, Ian
    Anh, Vo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A701 - A724
  • [5] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Lv, Longjin
    Qiu, Weiyuan
    Ren, Fuyao
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 619 - 628
  • [6] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [7] FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION
    Deng, Weihua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 204 - 226
  • [8] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Longjin Lv
    Weiyuan Qiu
    Fuyao Ren
    Journal of Statistical Physics, 2012, 149 : 619 - 628
  • [9] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [10] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260