Levy anomalous diffusion and fractional Fokker-Planck equation

被引:119
|
作者
Yanovsky, VV
Chechkin, AV
Schertzer, D
Tur, AV
机构
[1] Univ Paris 06, Modelisat Mecan Lab, F-75252 Paris 05, France
[2] Natl Acad Sci Ukraine, Inst Single Crystals, UA-310001 Kharkov, Ukraine
[3] Observ Midi Pyrenees, F-31400 Toulouse, France
来源
PHYSICA A | 2000年 / 282卷 / 1-2期
关键词
diffusion; transport; statistical physics; stochastic systems; scaling; renormalization;
D O I
10.1016/S0378-4371(99)00565-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the Fokker-Planck equation can be generalized into a 'fractional Fokker-Planck' equation, i.e., an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable sourer to the classical Gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non-trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments, The (mono-) scaling behaviors of the fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the fractional Fokker-Planck equation in physics, (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:13 / 34
页数:22
相关论文
共 50 条
  • [21] Local fractional Fokker-Planck equation
    Phys Rev Lett, 2 (214):
  • [22] Fractional representation of Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1929 - 1935
  • [23] Local fractional Fokker-Planck equation
    Kolwankar, KM
    Gangal, AD
    PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 214 - 217
  • [24] Fractional Fokker-Planck equation for anomalous diffusion in a potential: Exact matrix continued fraction solutions
    Coffey, W. T.
    Kalmykov, Y. P.
    Titov, S. V.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1847 - 1856
  • [25] Fractional Fokker-Planck equation for anomalous diffusion in a potential: Exact matrix continued fraction solutions
    W. T. Coffey
    Y. P. Kalmykov
    S. V. Titov
    The European Physical Journal Special Topics, 2013, 222 : 1847 - 1856
  • [26] Analytic description of anomalous diffusion in heterogeneous environments: Fokker-Planck equation without fractional derivatives
    Likhomanova, Polina
    Kalashnikov, Ilia
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [27] Parameters of the fractional Fokker-Planck equation
    Denisov, S. I.
    Haenggi, P.
    Kantz, H.
    EPL, 2009, 85 (04)
  • [28] Anomalous diffusion: nonlinear fractional Fokker-Planck equation (vol 284, pg 341, 2002)
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2003, 287 (1-2) : 295 - 295
  • [29] Levy stable distribution and space-fractional Fokker-Planck type equation
    Duan, Jun-Sheng
    Chaolu, Temuer
    Wang, Zhong
    Fu, Shou-Zhong
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 17 - 20
  • [30] EFFECTIVE DIFFUSION IN THE FOKKER-PLANCK EQUATION
    KOZLOV, SM
    MATHEMATICAL NOTES, 1989, 45 (5-6) : 360 - 368