Transcriptional competition shapes proteotoxic ER stress resolution

被引:12
|
作者
Ko, Dae Kwan [1 ,2 ]
Brandizzi, Federica [1 ,2 ,3 ]
机构
[1] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
基金
美国国家卫生研究院;
关键词
UNFOLDED PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM STRESS; GENE-EXPRESSION; REGULATORY CODE; HEAT-STRESS; SPECIFICITY; GENERATION; RECOVERY; COMPLEX; GROWTH;
D O I
10.1038/s41477-022-01150-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Through dynamic activities of conserved master transcription factors (mTFs), the unfolded protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER), a condition known as ER stress(1,2). Because dysregulated UPR is lethal, the competence for fate changes of the UPR mTFs must be tightly controlled(3,4). However, the molecular mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we identified the abscisic acid-related regulator G-class bZIP TF2 (GBF2) and the cis-regulatory element G-box as regulatory components of the plant UPR led by the mTFs, bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2 represses UPR gene expression. Conversely, a gbf2 null mutation enhances UPR gene expression and suppresses the lethality of a bzip28 bzip60 mutant in unresolved ER stress. By demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address the long-standing challenge of identifying shared signalling components for a better understanding of the dynamic nature and complexity of stress biology. Furthermore, our results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2 competition for proteostasis and cell fate determination.
引用
收藏
页码:481 / +
页数:27
相关论文
共 50 条
  • [31] Mitochondrial metabolism promotes adaptation to proteotoxic stress
    Peter Tsvetkov
    Alexandre Detappe
    Kai Cai
    Heather R. Keys
    Zarina Brune
    Weiwen Ying
    Prathapan Thiru
    Mairead Reidy
    Guillaume Kugener
    Jordan Rossen
    Mustafa Kocak
    Nora Kory
    Aviad Tsherniak
    Sandro Santagata
    Luke Whitesell
    Irene M. Ghobrial
    John L. Markley
    Susan Lindquist
    Todd R. Golub
    Nature Chemical Biology, 2019, 15 : 681 - 689
  • [32] COMPETITION SHAPES STRATEGY
    GABEL, HL
    HARVARD BUSINESS REVIEW, 1979, 57 (04) : 207 - &
  • [33] Ras, ROS and Proteotoxic Stress: A Delicate Balance
    Xu, Wanping
    Trepel, Jane
    Neckers, Len
    CANCER CELL, 2011, 20 (03) : 281 - 282
  • [34] Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases
    Brian Henderson
    A. Graham Pockley
    Cell Stress and Chaperones, 2012, 17 : 303 - 311
  • [35] A Quantitative Analysis of Cellular Lipid Compositions During Acute Proteotoxic ER Stress Reveals Specificity in the Production of Asymmetric Lipids
    Reinhard, John
    Mattes, Carsten
    Vaeth, Kristina
    Radanovic, Toni
    Surma, Michal A.
    Klose, Christian
    Ernst, Robert
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [36] Post-transcriptional regulation of the ER stress response in Cryptococcus neoformans
    Havel, V. E.
    Panepinto, J. C.
    MYCOSES, 2012, 55 : 298 - 298
  • [37] TRANSCRIPTIONAL REGULATION OF ERP72, A LUMINAL ER STRESS PROTEIN
    MARCUS, N
    GREEN, M
    MOLECULAR BIOLOGY OF THE CELL, 1995, 6 : 1781 - 1781
  • [38] Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases
    Henderson, Brian
    Pockley, A. Graham
    CELL STRESS & CHAPERONES, 2012, 17 (03): : 303 - 311
  • [39] Proteotoxic Stress and Cell Death in Cancer Cells
    Brancolini, Claudio
    Iuliano, Luca
    CANCERS, 2020, 12 (09) : 1 - 22
  • [40] A comparison of transcriptional activation by ERα and ERβ
    Cowley, SM
    Parker, MG
    JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1999, 69 (1-6): : 165 - 175