Transcriptional competition shapes proteotoxic ER stress resolution

被引:12
|
作者
Ko, Dae Kwan [1 ,2 ]
Brandizzi, Federica [1 ,2 ,3 ]
机构
[1] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
基金
美国国家卫生研究院;
关键词
UNFOLDED PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM STRESS; GENE-EXPRESSION; REGULATORY CODE; HEAT-STRESS; SPECIFICITY; GENERATION; RECOVERY; COMPLEX; GROWTH;
D O I
10.1038/s41477-022-01150-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Through dynamic activities of conserved master transcription factors (mTFs), the unfolded protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER), a condition known as ER stress(1,2). Because dysregulated UPR is lethal, the competence for fate changes of the UPR mTFs must be tightly controlled(3,4). However, the molecular mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we identified the abscisic acid-related regulator G-class bZIP TF2 (GBF2) and the cis-regulatory element G-box as regulatory components of the plant UPR led by the mTFs, bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2 represses UPR gene expression. Conversely, a gbf2 null mutation enhances UPR gene expression and suppresses the lethality of a bzip28 bzip60 mutant in unresolved ER stress. By demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address the long-standing challenge of identifying shared signalling components for a better understanding of the dynamic nature and complexity of stress biology. Furthermore, our results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2 competition for proteostasis and cell fate determination.
引用
收藏
页码:481 / +
页数:27
相关论文
共 50 条
  • [41] Mitochondrial metabolism promotes adaptation to proteotoxic stress
    Tsvetkov, Peter
    Detappe, Alexandre
    Cai, Kai
    Keys, Heather R.
    Brune, Zarina
    Ying, Weiwen
    Thiru, Prathapan
    Reidy, Mairead
    Kugener, Guillaume
    Rossen, Jordan
    Kocak, Mustafa
    Kory, Nora
    Tsherniak, Aviad
    Santagata, Sandro
    Whitesell, Luke
    Ghobrial, Irene M.
    Markley, John L.
    Lindquist, Susan
    Golub, Todd R.
    NATURE CHEMICAL BIOLOGY, 2019, 15 (07) : 681 - +
  • [42] The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress
    Shor, Erika
    Fox, Catherine A.
    Broach, James R.
    PLOS GENETICS, 2013, 9 (08):
  • [43] Low-level arsenic causes proteotoxic stress and not oxidative stress
    Dodson, Matthew
    de la Vega, Montserrat Rojo
    Harder, Bryan
    Castro-Portuguez, Raul
    Rodrigues, Silvia D.
    Wong, Pak Kin
    Chapman, Eli
    Zhang, Donna D.
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2018, 341 : 106 - 113
  • [44] Proteotoxic Stress as an Exploitable Vulnerability in Cells with Hyperactive AKT
    Babagana, Mahamat
    Brown, Lorin R.
    Slabodkin, Hannah Z.
    Kichina, Julia V.
    Kandel, Eugene S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [45] Impact of Carcinogenic Chromium on the Cellular Response to Proteotoxic Stress
    Ferreira, Leonardo M. R.
    Cunha-Oliveira, Teresa
    Sobral, Margarida C.
    Abreu, Patricia L.
    Alpoim, Maria Carmen
    Urbano, Ana M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [46] Astrocyte plasticity revealed by adaptations to severe proteotoxic stress
    Titler, Amanda M.
    Posimo, Jessica M.
    Leak, Rehana K.
    CELL AND TISSUE RESEARCH, 2013, 352 (03) : 427 - 443
  • [47] Chromosomal instability shapes the tumor microenvironment through a chronic ER-stress response
    Li, Jun
    Hubisz, Melissa
    Earlie, Ethan
    Duran, Mercedes A.
    Lettera, Emanuele
    Phyu, Su M.
    Amin, Amit D.
    Deyell, Matthew
    Kamiya, Erina
    Budre, Karolina
    Cavallo, Julie-Ann
    Garris, Christopher
    Wen, Hannah
    Izar, Benjamin
    Parkes, Eileen
    Laughney, Ashley
    Bakhoum, Samuel
    CANCER RESEARCH, 2022, 82 (12)
  • [48] TRANSCRIPTIONAL COMPETITION IN THALASSEMIAS
    LABIE, D
    M S-MEDECINE SCIENCES, 1993, 9 (12): : 1415 - 1417
  • [49] The heat shock factor family and adaptation to proteotoxic stress
    Fujimoto, Mitsuaki
    Nakai, Akira
    FEBS JOURNAL, 2010, 277 (20) : 4112 - 4125
  • [50] Cotranslational Response to Proteotoxic Stress by Elongation Pausing of Ribosomes
    Liu, Botao
    Han, Yan
    Qian, Shu-Bing
    MOLECULAR CELL, 2013, 49 (03) : 453 - 463