The General Formula for the Ehrhart Polynomial of Polytopes with Applications

被引:0
|
作者
Sadiq, Fatema A. [1 ]
Salman, Shatha A. [1 ]
Sabri, Raghad, I [1 ]
机构
[1] Univ Technol Baghdad, Fac Appl Sci, Math & Comp Applicat, Baghdad, Iraq
关键词
Cyclic Polytopes; Ehrhart Polynomial; Product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Polytopes have shown wide applications in a lot of situations. For example, a cyclic polytope is very important in different areas of science like solutions to extremum problems (the Upper Bound Conjecture). Polytopes serve as bases for diverse constructions (from triangulations to bimatrix games). In addition, we give the general form for the product of simplex polytopes and an algorithm for these computations.
引用
收藏
页码:1583 / 1590
页数:8
相关论文
共 50 条
  • [21] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [22] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [23] SOME RESULTS ON EHRHART POLYNOMIALS OF CONVEX POLYTOPES
    HIBI, T
    [J]. DISCRETE MATHEMATICS, 1990, 83 (01) : 119 - 121
  • [24] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Hegedues, Gabor
    Kasprzyk, Alexander M.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 46 (03) : 488 - 499
  • [25] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232
  • [26] Restricted Birkhoff Polytopes and Ehrhart Period Collapse
    Alexandersson, Per
    Hopkins, Sam
    Zaimi, Gjergji
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023,
  • [27] Ehrhart polynomials of lattice-face polytopes
    Liu, Fu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 3041 - 3069
  • [28] Decompositions of Ehrhart h*-Polynomials for Rational Polytopes
    Beck, Matthias
    Braun, Benjamin
    Vindas-Melendez, Andres R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (01) : 50 - 71
  • [29] Roots of Ehrhart Polynomials of Smooth Fano Polytopes
    Gábor Hegedüs
    Alexander M. Kasprzyk
    [J]. Discrete & Computational Geometry, 2011, 46 : 488 - 499
  • [30] The Ehrhart polynomial of the Birkhoff polytope
    Beck, M
    Pixton, D
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (04) : 623 - 637