Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems

被引:33
|
作者
Wang, Zhi [1 ]
Li, Han-Xiong [1 ]
机构
[1] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
关键词
Distributed parameter systems (DPSs); incremental learning; Karhunen-Loeve decomposition (KLD); online spatiotemporal modeling; LINEAR-SYSTEMS; REDUCTION; IDENTIFICATION; APPROXIMATION; PCA;
D O I
10.1109/TSMC.2018.2810447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An incremental spatiotemporal learning scheme is proposed for online modeling of distributed parameter systems (DPSs). A novel incremental learning method is developed to recursively update the spatial basis functions and the corresponding temporal model based on the Karhunen-Loeve decomposition for time-space separation. The time-space synthesis continually evolves by adding new increment data with more updated information and revising the existing parameters of the dynamic system. In this way, the spatiotemporal structure is inherited and updated efficiently as output data increases over time. The adaptive nature of this evolving structure makes it promising for online modeling of DPSs under streaming data environment. The proposed incremental modeling scheme is evaluated on the classical benchmark of a catalytic rod problem. The simulation results demonstrate the viability and efficiency of the proposed method for online modeling of DPSs.
引用
收藏
页码:2612 / 2622
页数:11
相关论文
共 50 条
  • [1] Incremental Learning Based Subspace Modeling for Distributed Parameter Systems
    Wang, Zhi
    Li, Han-Xiong
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [2] Online Spatiotemporal Extreme Learning Machine for Complex Time-Varying Distributed Parameter Systems
    Lu, Xinjiang
    Yin, Feng
    Liu, Chang
    Huang, Minghui
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (04) : 1753 - 1762
  • [3] Online spatiotemporal modeling for time-varying distributed parameter systems using Kernel-based Multilayer Extreme Learning Machine
    ChengJiu Zhu
    HaiDong Yang
    YaJun Fan
    Bi Fan
    KangKang Xu
    [J]. Nonlinear Dynamics, 2022, 107 : 761 - 780
  • [4] Online spatiotemporal modeling for time-varying distributed parameter systems using Kernel-based Multilayer Extreme Learning Machine
    Zhu, ChengJiu
    Yang, HaiDong
    Fan, YaJun
    Fan, Bi
    Xu, KangKang
    [J]. NONLINEAR DYNAMICS, 2022, 107 (01) : 761 - 780
  • [5] Incremental Modeling of Nonlinear Distributed Parameter Processes via Spatiotemporal Kernel Series Expansion
    Li, Han-Xiong
    Qi, Chenkun
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (06) : 3052 - 3058
  • [6] A Spatiotemporal Neural Network Modeling Method for Nonlinear Distributed Parameter Systems
    Lu, XinJiang
    Cui, Xiangbo
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1916 - 1926
  • [7] Deep Extreme Learning Machines Based Two-Phase Spatiotemporal Modeling for Distributed Parameter Systems
    Xu, Kangkang
    Yang, Haidong
    Zhu, Chengjiu
    Jin, Xi
    Fan, Bi
    Hu, Luoke
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2919 - 2929
  • [8] Modified High-Order SVD for Spatiotemporal Modeling of Distributed Parameter Systems
    Chen, Liqun
    Li, Han-Xiong
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 4296 - 4304
  • [9] Confidence-Aware Multiscale Learning for Online Modeling of Distributed Parameter Systems With Application to Curing Process
    Meng, Xian-Bing
    Chen, C. L. Philip
    Li, Han-Xiong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (09) : 9432 - 9440
  • [10] Spatiotemporal kernel-local-embedding modeling approach for nonlinear distributed parameter systems
    Xu, Bowen
    Lu, Xinjiang
    [J]. JOURNAL OF PROCESS CONTROL, 2022, 119 : 101 - 114