A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems

被引:0
|
作者
Zhou, Gang [1 ]
Zhang, Xianxia [1 ]
Wang, Tangchen [1 ]
Wang, Bing [1 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
distributed parameter system; genetic algorithm; automatic clustering; hierarchical extreme learning machine; fuzzy model; 93-10;
D O I
10.3390/math13030364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Modeling distributed parameter systems (DPSs) is challenging due to their strong nonlinearity and spatiotemporal coupling. In this study, a three-dimensional fuzzy modeling method combining genetic algorithm (GA)-based automatic clustering and hierarchical extreme learning machine (HELM) is proposed for DPS modeling. The method utilizes GA-based automatic clustering to learn the premise part of 3D fuzzy rules, while HELM is employed to learn spatial basis functions and construct a complete fuzzy rule base. This approach effectively captures the spatiotemporal coupling characteristics of the system and mitigates the information loss commonly observed in dimensionality reduction in traditional fuzzy modeling methods. Through experimental verification, the proposed method is successfully applied to a rapid thermal chemical vapor deposition system. The experimental results demonstrate that the method can accurately predict temperature distribution and maintain good robustness under noise and disturbances.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Deep Extreme Learning Machines Based Two-Phase Spatiotemporal Modeling for Distributed Parameter Systems
    Xu, Kangkang
    Yang, Haidong
    Zhu, Chengjiu
    Jin, Xi
    Fan, Bi
    Hu, Luoke
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2919 - 2929
  • [2] Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems
    Wang, Zhi
    Li, Han-Xiong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (12): : 2612 - 2622
  • [3] A hierarchical fuzzy-clustering approach to fuzzy modeling
    Tsekouras, G
    Sarimveis, H
    Kavakli, E
    Bafas, G
    FUZZY SETS AND SYSTEMS, 2005, 150 (02) : 245 - 266
  • [4] Dual Extreme Learning Machines-Based Spatiotemporal Modeling for Nonlinear Distributed Thermal Processes
    Xi, Jin
    Dong, Yang Hai
    Kang, Xu Kang
    Jiu, Zhu Cheng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (01)
  • [5] Online Spatiotemporal Extreme Learning Machine for Complex Time-Varying Distributed Parameter Systems
    Lu, Xinjiang
    Yin, Feng
    Liu, Chang
    Huang, Minghui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (04) : 1753 - 1762
  • [6] Spatiotemporal kernel-local-embedding modeling approach for nonlinear distributed parameter systems
    Xu, Bowen
    Lu, Xinjiang
    JOURNAL OF PROCESS CONTROL, 2022, 119 : 101 - 114
  • [7] A Novel Spatiotemporal Fuzzy Method for Modeling of Complex Distributed Parameter Processes
    Lu, Xinjiang
    Hu, Tete
    Yin, Feng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (10) : 7882 - 7892
  • [8] Online spatiotemporal modeling for time-varying distributed parameter systems using Kernel-based Multilayer Extreme Learning Machine
    Zhu, ChengJiu
    Yang, HaiDong
    Fan, YaJun
    Fan, Bi
    Xu, KangKang
    NONLINEAR DYNAMICS, 2022, 107 (01) : 761 - 780
  • [9] Online spatiotemporal modeling for time-varying distributed parameter systems using Kernel-based Multilayer Extreme Learning Machine
    ChengJiu Zhu
    HaiDong Yang
    YaJun Fan
    Bi Fan
    KangKang Xu
    Nonlinear Dynamics, 2022, 107 : 761 - 780
  • [10] Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines
    Vanli, Nuri Denizcan
    Sayin, Muhammed O.
    Delibalta, Ibrahim
    Kozat, Suleyman Serdar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (03) : 546 - 558