A Novel Spatiotemporal Fuzzy Method for Modeling of Complex Distributed Parameter Processes

被引:13
|
作者
Lu, Xinjiang [1 ,2 ]
Hu, Tete [1 ,2 ]
Yin, Feng [1 ,2 ]
机构
[1] Cent South Univ, State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed parameter system (DPS); fuzzy; modeling; noise; partial differential equation (PDE); EXTREME LEARNING-MACHINE; SYSTEMS; DESIGN; IDENTIFICATION; CONTROLLERS; PROFILE; SPACE;
D O I
10.1109/TIE.2018.2877118
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy modeling has been widely used to model lumped parameter systems. However, it cannot be used to model complex distributed parameter systems (DPS) due to its inability to handle spatial dynamics. In this paper, we propose a novel spatiotemporal fuzzy method for the modeling of complex nonlinear DPSs. A spatial fuzzy model is first constructed to represent the nonlinear spatial dynamics. This process ensures that the space information is inherently considered in the spatiotemporal fuzzy model. A fuzzy model is then used to represent the nonlinear temporal dynamics. These two fuzzy models are further integrated to construct a spatiotemporal fuzzy model, which allows for the reconstruction of the DPS. Additionally, it can improve the modeling robustness even in the presence of noise due to the robust ability of fuzzy modeling. Performance analyses and experimental validations further show that the proposed method can effectively model complex nonlinear DPSs and has the better modeling ability than several commonly used methods.
引用
收藏
页码:7882 / 7892
页数:11
相关论文
共 50 条
  • [1] A spatiotemporal fuzzy control approach for complex distributed parameter system with application to thermal processes
    Xu, Bowen
    Lu, Xinjiang
    Bai, Yunxu
    JOURNAL OF PROCESS CONTROL, 2023, 127
  • [2] A novel low-order spatiotemporal modeling method for nonlinear distributed parameter systems
    Lu, Xinjiang
    Xu, Bowen
    He, Pingzhong
    JOURNAL OF PROCESS CONTROL, 2021, 106 : 84 - 93
  • [3] A Novel Three-Dimensional Fuzzy Modeling Method for Nonlinear Distributed Parameter Systems
    Zhang, Xian-Xia
    Zhao, Lian-Rong
    Li, Han-Xiong
    Ma, Shi-Wei
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (03) : 489 - 501
  • [4] A Spatiotemporal Neural Network Modeling Method for Nonlinear Distributed Parameter Systems
    Lu, XinJiang
    Cui, Xiangbo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1916 - 1926
  • [5] Incremental Modeling of Nonlinear Distributed Parameter Processes via Spatiotemporal Kernel Series Expansion
    Li, Han-Xiong
    Qi, Chenkun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (06) : 3052 - 3058
  • [6] A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process
    Lu, Xinjiang
    Zou, Wei
    Huang, Minghui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (03) : 1156 - 1165
  • [7] Fuzzy modeling for complex processes
    Zhu, WB
    Sun, ZQ
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 2172 - 2175
  • [8] Error Compensation-based Time-Space Separation Modeling Method for Complex Distributed Parameter Processes
    Lu, Xinjiang
    He, PingZhong
    Xu, Jie
    JOURNAL OF PROCESS CONTROL, 2019, 80 : 117 - 126
  • [9] Spatiotemporal Modeling for Distributed Parameter System under Sparse Sensing
    Chen, Liqun
    Li, Han-Xiong
    Yang, Hai-Dong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (37) : 16321 - 16329
  • [10] Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems
    Wang, Zhi
    Li, Han-Xiong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (12): : 2612 - 2622