A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems

被引:0
|
作者
Zhou, Gang [1 ]
Zhang, Xianxia [1 ]
Wang, Tangchen [1 ]
Wang, Bing [1 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
distributed parameter system; genetic algorithm; automatic clustering; hierarchical extreme learning machine; fuzzy model; 93-10;
D O I
10.3390/math13030364
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Modeling distributed parameter systems (DPSs) is challenging due to their strong nonlinearity and spatiotemporal coupling. In this study, a three-dimensional fuzzy modeling method combining genetic algorithm (GA)-based automatic clustering and hierarchical extreme learning machine (HELM) is proposed for DPS modeling. The method utilizes GA-based automatic clustering to learn the premise part of 3D fuzzy rules, while HELM is employed to learn spatial basis functions and construct a complete fuzzy rule base. This approach effectively captures the spatiotemporal coupling characteristics of the system and mitigates the information loss commonly observed in dimensionality reduction in traditional fuzzy modeling methods. Through experimental verification, the proposed method is successfully applied to a rapid thermal chemical vapor deposition system. The experimental results demonstrate that the method can accurately predict temperature distribution and maintain good robustness under noise and disturbances.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Hierarchical modeling of complex systems: A hybrid approach combining the best of flattening and component-based modeling
    Claeys, F. H. A.
    Vanrolleghem, P. A.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 1087 - 1093
  • [32] Robust Reference Tracking Control Design for Nonlinear Distributed Parameter Systems: Fuzzy Approach
    Chang, Yu-Te
    Chen, Bor-Sen
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1592 - 1597
  • [33] Multilayer Online Sequential Reduced Kernel Extreme Learning Machine-Based Modeling for Time-Varying Distributed Parameter Systems
    Zhu, Chengjiu
    Yang, Haidong
    Jin, Xi
    Xu, Kangkang
    Li, Hongcheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (01) : 624 - 634
  • [34] A temporal-spatiotemporal domain transformation-based modeling method for nonlinear distributed parameter systems
    Jin, Xi
    Wu, Daibiao
    Yang, Haidong
    Zhu, Chengjiu
    Shen, Wenjing
    Xu, Kangkang
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (03) : 1267 - 1279
  • [35] AN INVENTORY CLASSIFICATION APPROACH COMBINING EXPERT SYSTEMS, CLUSTERING, AND FUZZY LOGIC WITH THE ABC METHOD, AND AN APPLICATION
    Aktepe, A.
    Ersoz, S.
    Turker, A. K.
    Barisci, N.
    Dalgic, A.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2018, 29 (01): : 49 - 62
  • [36] A hybrid approach for automatic generation of fuzzy inference systems without supervised learning
    Zhou, Yi
    Er, Meng Joo
    Wen, Yu
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 840 - 845
  • [37] Online Three-Dimensional Fuzzy Multi-Output Support Vector Regression Learning Modeling for Complex Distributed Parameter Systems
    Zhou, Gang
    Zhang, Xianxia
    Yuan, Hanyu
    Wang, Bing
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [38] SVR Learning-Based Spatiotemporal Fuzzy Logic Controller for Nonlinear Spatially Distributed Dynamic Systems
    Zhang, Xian-Xia
    Jiang, Ye
    Li, Han-Xiong
    Li, Shao-Yuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (10) : 1635 - 1647
  • [39] A Sliding Window Based Dynamic Spatiotemporal Modeling for Distributed Parameter Systems With Time-Dependent Boundary Conditions
    Wang, Bing-Chuan
    Li, Han-Xiong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (04) : 2044 - 2053
  • [40] A new approach to TS fuzzy modeling using dual kernel-based learning machines
    Li, Wei
    Yang, Yupu
    NEUROCOMPUTING, 2008, 71 (16-18) : 3660 - 3665