A temporal-spatiotemporal domain transformation-based modeling method for nonlinear distributed parameter systems

被引:3
|
作者
Jin, Xi [1 ]
Wu, Daibiao [1 ]
Yang, Haidong [1 ]
Zhu, Chengjiu [1 ]
Shen, Wenjing [2 ]
Xu, Kangkang [1 ]
机构
[1] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R China
[2] Shenzhen Technol Univ, Sino German Coll Intelligent Mfg, Shenzhen 518118, Peoples R China
基金
中国国家自然科学基金;
关键词
spatiotemporal modeling; kernel-based extreme learning machine; distributed parameter system; strong nonlinearity; locally linear embedding; EXTREME LEARNING-MACHINE; SPATIAL BASIS FUNCTIONS; REDUCTION; REGRESSION;
D O I
10.1093/jcde/qwad052
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Complex nonlinear distributed parameter systems (DPSs) exist widely in advanced industrial thermal processes. The modeling of such highly nonlinear systems is a challenge for traditional time/space-separation-based methods since they employ linear methods for the model reduction and spatiotemporal reconstruction, which may lead to an inefficient application of the nonlinear spatial structure features represented by the spatial basis functions. To overcome this problem, a novel spatiotemporal modeling framework composed of nonlinear temporal domain transformation and nonlinear spatiotemporal domain reconstruction is proposed in this paper. Firstly, local nonlinear dimension reduction based on the locally linear embedding technique is utilized to perform nonlinear temporal domain transformation of the spatiotemporal output of nonlinear DPSs. In this step, the original spatiotemporal data can be directly transformed into low-order time coefficients. Then, the extreme learning machine (ELM) method is utilized to establish a temporal model. Finally, through the spatiotemporal domain reconstruction based on the kernel-based ELM method, the prediction of the temporal dynamics obtained from the temporal model can be reconstructed back to the spatiotemporal output. The effectiveness and performance of the proposed method are demonstrated in experiments on the thermal processes of a snap curing oven and a lithium-ion battery.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 50 条
  • [1] Spatiotemporal Transformation-Based Neural Network With Interpretable Structure for Modeling Distributed Parameter Systems
    Wei, Peng
    Li, Han-Xiong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 729 - 737
  • [2] A Spatiotemporal Neural Network Modeling Method for Nonlinear Distributed Parameter Systems
    Lu, XinJiang
    Cui, Xiangbo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1916 - 1926
  • [3] A novel low-order spatiotemporal modeling method for nonlinear distributed parameter systems
    Lu, Xinjiang
    Xu, Bowen
    He, Pingzhong
    JOURNAL OF PROCESS CONTROL, 2021, 106 : 84 - 93
  • [4] Spatiotemporal kernel-local-embedding modeling approach for nonlinear distributed parameter systems
    Xu, Bowen
    Lu, Xinjiang
    JOURNAL OF PROCESS CONTROL, 2022, 119 : 101 - 114
  • [5] SSAE and GRU Based Joint Modeling for Nonlinear Distributed Parameter Systems
    Ai, Ling
    Gan, Junzhe
    Feng, Xianjie
    Chen, Xueqin
    IEEE ACCESS, 2022, 10 : 98501 - 98511
  • [6] A transformation-based method for name converge in quiescent context of replicated solid modeling systems
    Liao, Bin
    He, Fazhi
    Jing, Shuxu
    Wu, Yue
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 236 - 239
  • [7] Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems
    Wang, Zhi
    Li, Han-Xiong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (12): : 2612 - 2622
  • [8] A graph transformation-based approach for the validation of checkpointing algorithms in distributed systems
    Khlif, Houda
    Kacem, Hatem Hadj
    Hernandez, Saul E. Pomares
    Eichler, Cedric
    Kacem, Ahmed Hadj
    Simon, Alberto Calixto
    2014 IEEE 23RD INTERNATIONAL WETICE CONFERENCE (WETICE), 2014, : 80 - 85
  • [9] A Novel Three-Dimensional Fuzzy Modeling Method for Nonlinear Distributed Parameter Systems
    Zhang, Xian-Xia
    Zhao, Lian-Rong
    Li, Han-Xiong
    Ma, Shi-Wei
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (03) : 489 - 501
  • [10] A Novel Spatiotemporal Fuzzy Method for Modeling of Complex Distributed Parameter Processes
    Lu, Xinjiang
    Hu, Tete
    Yin, Feng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (10) : 7882 - 7892