Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems

被引:33
|
作者
Wang, Zhi [1 ]
Li, Han-Xiong [1 ]
机构
[1] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
关键词
Distributed parameter systems (DPSs); incremental learning; Karhunen-Loeve decomposition (KLD); online spatiotemporal modeling; LINEAR-SYSTEMS; REDUCTION; IDENTIFICATION; APPROXIMATION; PCA;
D O I
10.1109/TSMC.2018.2810447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An incremental spatiotemporal learning scheme is proposed for online modeling of distributed parameter systems (DPSs). A novel incremental learning method is developed to recursively update the spatial basis functions and the corresponding temporal model based on the Karhunen-Loeve decomposition for time-space separation. The time-space synthesis continually evolves by adding new increment data with more updated information and revising the existing parameters of the dynamic system. In this way, the spatiotemporal structure is inherited and updated efficiently as output data increases over time. The adaptive nature of this evolving structure makes it promising for online modeling of DPSs under streaming data environment. The proposed incremental modeling scheme is evaluated on the classical benchmark of a catalytic rod problem. The simulation results demonstrate the viability and efficiency of the proposed method for online modeling of DPSs.
引用
收藏
页码:2612 / 2622
页数:11
相关论文
共 50 条
  • [41] A DOMAIN SEGMENTATION APPROACH TO MODELING DISTRIBUTED PARAMETER-SYSTEMS
    APENYO, K
    KARPLUS, WJ
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1982, 12 (03): : 299 - 307
  • [42] CONTROL-ORIENTED MODELING OF DISTRIBUTED PARAMETER-SYSTEMS
    HELMICKI, AJ
    JACOBSON, CA
    NETT, CN
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1992, 114 (03): : 339 - 346
  • [43] Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization
    Majhi, Babita
    Panda, Ganapati
    DIGITAL SIGNAL PROCESSING, 2013, 23 (04) : 1303 - 1313
  • [44] Online Identification of Nonlinear Spatiotemporal Systems Using Kernel Learning Approach
    Ning, Hanwen
    Jing, Xingjian
    Cheng, Li
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (09): : 1381 - 1394
  • [45] State prediction of distributed parameter systems based on multi-source spatiotemporal information
    Mu, Guoqing
    Chen, Junghui
    Liu, Jingxiang
    Shao, Weiming
    Zhao, Dongya
    JOURNAL OF PROCESS CONTROL, 2022, 119 : 55 - 67
  • [46] State prediction of distributed parameter systems based on multi-source spatiotemporal information
    Mu, Guoqing
    Chen, Junghui
    Liu, Jingxiang
    Shao, Weiming
    Zhao, Dongya
    JOURNAL OF PROCESS CONTROL, 2022, 119 : 55 - 67
  • [47] Modeling, control and design of distributed parameter systems as lumped input and distributed output systems with demonstration in MATLAB
    Hulkó, G
    Antoniová, M
    Belavy, C
    Heugerová, A
    Belansky, J
    Szuda, J
    Végh, P
    NEW TRENDS IN DESIGN OF CONTROL SYSTEMS 1997, 1998, : 201 - 208
  • [48] Spatiotemporal events in distributed systems
    Nojumi, H
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, 2000, : 1479 - 1484
  • [49] Approximation modeling for the online performance management of distributed computing systems
    Kusic, Dara
    Kandasamy, Nagarajan
    Jiang, Guofei
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1221 - 1233
  • [50] Iterative Learning Identification for Discrete Parabolic Distributed Parameter Systems
    Liu, Lanlan
    Dai, Xisheng
    Zhou, Xingyu
    Yu, Shali
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 588 - 592