Incremental Spatiotemporal Learning for Online Modeling of Distributed Parameter Systems

被引:33
|
作者
Wang, Zhi [1 ]
Li, Han-Xiong [1 ]
机构
[1] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
关键词
Distributed parameter systems (DPSs); incremental learning; Karhunen-Loeve decomposition (KLD); online spatiotemporal modeling; LINEAR-SYSTEMS; REDUCTION; IDENTIFICATION; APPROXIMATION; PCA;
D O I
10.1109/TSMC.2018.2810447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An incremental spatiotemporal learning scheme is proposed for online modeling of distributed parameter systems (DPSs). A novel incremental learning method is developed to recursively update the spatial basis functions and the corresponding temporal model based on the Karhunen-Loeve decomposition for time-space separation. The time-space synthesis continually evolves by adding new increment data with more updated information and revising the existing parameters of the dynamic system. In this way, the spatiotemporal structure is inherited and updated efficiently as output data increases over time. The adaptive nature of this evolving structure makes it promising for online modeling of DPSs under streaming data environment. The proposed incremental modeling scheme is evaluated on the classical benchmark of a catalytic rod problem. The simulation results demonstrate the viability and efficiency of the proposed method for online modeling of DPSs.
引用
收藏
页码:2612 / 2622
页数:11
相关论文
共 50 条
  • [31] Neural Numerical Modeling for Uncertain Distributed Parameter Systems
    Fuentes, R.
    Poznyak, A.
    Chairez, I.
    Poznyak, T.
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2294 - +
  • [32] Finite dimensional modeling and control of distributed parameter systems
    Zheng, D
    Hoo, KA
    Piovoso, MJ
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 4377 - 4382
  • [33] Spatial Construction for Modeling of Unknown Distributed Parameter Systems
    Wei, Peng
    Li, Han-Xiong
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (42) : 15184 - 15193
  • [34] MODELING DISTRIBUTED-PARAMETER FLOW SYSTEMS FOR CONTROL
    BAKER, TE
    MCCANN, MJ
    [J]. MECHANICAL ENGINEERING, 1968, 90 (02) : 73 - &
  • [35] Iterative learning control for irregular distributed parameter systems
    Fu Q.
    [J]. Fu, Qin (fuqin925@sina.com), 1600, Northeast University (31): : 114 - 122
  • [36] Iterative Learning Control for Distributed Parameter Switched Systems
    Zhang Jianxiang
    Dai Xisheng
    Tian Senping
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1105 - 1110
  • [37] On Iterative Learning Control of Parabolic Distributed Parameter Systems
    Xu, Chao
    Arastoo, Reza
    Schuster, Eugenio
    [J]. MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 510 - 515
  • [38] Distributed Incremental wLPSVM Learning
    Zhu, Lei
    Ban, Tao
    Ikeda, Kazushi
    Pang, Paul
    Sarrafzadeh, Abdolhossein
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [39] Robust Spatiotemporal LS-SVM Modeling for Nonlinear Distributed Parameter System With Disturbance
    Lu, Xinjiang
    Zou, Wei
    Huang, Minghui
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (10) : 8003 - 8012
  • [40] Spatial Correlation-Based Incremental Learning for Spatiotemporal Modeling of Battery Thermal Process
    Wang, Bing-Chuan
    Li, Han-Xiong
    Yang, Hai-Dong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (04) : 2885 - 2893