On the spectral zeta function for the noncommutative harmonic oscillator

被引:11
|
作者
Ichinose, Takashi [1 ]
Wakayama, Masato
机构
[1] Kanazawa Univ, Fac Sci, Dept Math, Kanazawa, Ishikawa 9201192, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
基金
日本学术振兴会;
关键词
spectral zeta functions; Riemann's zeta function; harmonic oscillator; noncommutative; harmonic oscillators; Weyl's law; Bernoulli's number;
D O I
10.1016/S0034-4877(07)80077-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral zeta function for the so-called noncommutative harmonic oscillator is able to be meromorphically extended to the whole complex plane, having only one simple pole at the same point s = 1 where Riemann's zeta function (s) has, and possesses a trivial zero at each nonpositive even integer. The essential part of its proof is sketched. A new result is also given on the lower and upper bounds of the eigenvalues of the noncommutative harmonic oscillator.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [41] THE TWO-DIMENSIONAL HARMONIC OSCILLATOR ON A NONCOMMUTATIVE SPACE WITH MINIMAL UNCERTAINTIES
    Dey, Sanjib
    Fring, Andreas
    ACTA POLYTECHNICA, 2013, 53 (03) : 268 - 270
  • [42] The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space
    Yakup, Rehimhaji
    Dulat, Sayipjamal
    Li, Kang
    Hekim, Mamatabdulla
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (04) : 1404 - 1414
  • [43] Exact Solutions of a Damped Harmonic Oscillator in a Time Dependent Noncommutative Space
    Manjari Dutta
    Shreemoyee Ganguly
    Sunandan Gangopadhyay
    International Journal of Theoretical Physics, 2020, 59 : 3852 - 3875
  • [44] Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves
    Saha, Anirban
    Gangopadhyay, Sunandan
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [45] On noncommutative energy spectra in two-dimensional coupling harmonic oscillator
    Gou Li-Dan
    ACTA PHYSICA SINICA, 2021, 70 (20)
  • [46] On spectral theory of the Riemann zeta function
    Xian-Jin Li
    Science China Mathematics, 2019, 62 : 2317 - 2330
  • [47] Spectral zeta function of symmetric fractals
    Teplyaev, A
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 245 - 262
  • [48] Spectral action with zeta function regularization
    Kurkov, Maxim A.
    Lizzi, Fedele
    Sakellariadou, Mairi
    Watcharangkool, Apimook
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [49] On spectral theory of the Riemann zeta function
    Li, Xian-Jin
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (11) : 2317 - 2330
  • [50] On spectral theory of the Riemann zeta function
    Xian-Jin Li
    Science China Mathematics, 2019, 62 (11) : 2317 - 2330